The Importance of Geodetically Controlled Data Sets: THEMIS Controlled Mosaics of Mars, A Case Study

R. L. Fergason and L. Weller
Astrogeology Science Center
Planetary Science Informatics and Data Analytics International Conference
April 26, 2018
Why Control?

Ο Geodetically controlled products are foundational data products.
 ○ Errors / uncertainties are quantified at local scales.
 ○ Tied to a legitimate base map.
 ○ Updated kernels are generated

Ο When do you want to use a controlled product?
 ○ Geologic mapping
 ○ Entry, landing, and descent evaluations for lander mission
 ○ Mission planning and coordination
 ○ Change detection studies
 ○ Fusion of multiple data sets
Iapygia
14.8 S, 72.9 E

10 pixel (~1 km) shift
Iapygia
14.8 S, 72.9 E

10 pixel (~1 km) shift
Elysium
15.4 N, 162.4 E

16-20 pixel
(~1.6 to 2.0 km) shift
Elysium
15.4 N, 162.4 E

16-20 pixel
(~1.6 to 2.0 km) shift

10 km
THEMIS Instrument

♦ Spatial scale of 100 m per pixel

♦ Sensor type = Line-scan imager

♦ Mapping priority was to obtain global coverage, not with the intention of generating a controlled product.

♦ Images were acquired both during the day and at night.
Methods and Data

.wrapper-decoration { text-indent: 0; }

- This is one of the first global controlled products made with ISIS3

- Software

 - Jmars to identify and constrain THEMIS image list.
 - ISIS3 to generate the control network.
 - Davinci to process THEMIS data and generate the controlled mosaics.
 - ArcGIS to visually inspect each mosaic.

- Ground Control

 - Current accepted ground data source for Mars is the MOLA DEM.
 - Tied to the Viking MDIM network, which is tied to the MOLA DEM.
Workflow Overview

- Identify suitable images by constraining on various parameters (Jmars)
- THEMIS image processing (ISIS3/Davinci)
- Assemble the control network (ISIS3)
- Run bundle adjustment (iterative process in ISIS3)
- Tie to ground (ISIS3)
- Write out updated image and spacecraft kernels (ISIS3)
- Generate controlled mosaics (davinci)
Workflow: Control Network Assembly

- Two processes were used to generate the control networks:
 - Utilizing existing points in the merged network
 - Creating new points and measures

- Merge these two networks into a single, cohesive network that we pass to the bundle adjustment program.
Utilizing Existing Points from the Merged Network

Creating New Points and Measures
Workflow: Bundle Adjustment

◊ Evaluate the health of the network
 ◊ Identify images with zero or few points
 ◊ Identify islands

◊ Run bundle adjustment
 ◊ Evaluate the results
 ◊ Remove high residual measures
 ◊ Re-evaluate the health of the network
 ◊ Re-run bundle adjustment

◊ We tie the network to the Viking MDIM, which is tied to MOLA.
Accuracy

- Horizontal accuracy is **60-390 meters**
- 0.6 to 3.9 pixels

If you do not control your data, you have no idea about the accuracy of your product.

Elysium Planitia - Daytime IR (upper) and nighttime IR (lower); 3.7 N, 138.0 E
Product Availability

- Products that are available from:
 - PDS Annex
 http://astrogeology.usgs.gov/
 - Custom layer in Jmars.

- Products:
 - Kernel files describing these improvements for each image in the control network.
 - Controlled, orthoprojected daytime IR and nighttime IR mosaics of Mars at 100 m/pixel scale for the ±65° latitude region of Mars.

- Image mosaic formats:
 - GeoTiff format with available ISIS3 and PDS3 labels.

- Final mosaics will be available in September 2018.
Acknowledgements

◊ Constructive proposal reviews from Frank Seelos (APL), Wes Patterson (APL), Ross Beyer (Ames), and others.

◊ Contributions early in the project from Ella Lee (USGS) and Orin Thomas (USGS), particularly with improvements to the Viking MDIM network.

◊ Helpful conversations with Jeff Anderson (USGS), Tammy Becker (USGS), Brent Archinal (USGS), Kenneth Edmundson (USGS), Kimberly Murray (ASU), and Christopher Edwards (NAU).

◊ Ingestion of the product into JMars by the Mars Space Flight Facility at ASU, and particularly Dale Noss and Scott Dickenshied.

◊ Funding from the NASA – USGS Interagency Agreement.