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Introduction:  After several years of processing and 

analyzing data from solar system missions and Citizen 

Science data I have recognized a few repeating patterns 

in the supporting software I created for working with 

these data.  

Specifically, for the case of explorative data 

analysis, where it is often necessary to study and 

compare data from different processing or quality 

levels, or between the new derived product and the 

incoming data, three support structures turned out to be 

the most helpful patterns. These most prevalent patterns 

are what I call path managers data (or database) 

managers, and metadata searches. 

For data processing, I have established a few simple 

tools that enable me to execute embarrassingly parallel 

workloads in parallel on multi-core machines without 

getting into parallel programming details.  

Data(base)Manager:  Often one has to work with 

different sources of data for the same analysis, either 

because one production set is newer and/or not 

published at the same source, or because one set has 

been produced as a derivative from the other. Other use 

cases include managing different versions of data 

dumps where for regression checking it is important 

that the same code can be executed easily with different 

sets of incoming data. 

In these cases, it is very helpful to define a software 

tool (a Python class in my case) that helps with easy 

finding and access to the different data. 

The characterizing features are:  

1) distinguish between and provide different 

versions of datasets in the project storage folder; 2) 

node/machine-dependent storage locations (e.g. laptops 

usually have less capacity than desktops); 3), sub-

dataset retrieval functions that are able to filter the 

currently active data-set for keywords and/or ranges of 

parameters, easily providing a subset for the ongoing 

work task. 

Node/machine-dependent storage locations can be 

managed by a configuration file, that, once created, are 

used by the DataBaseManager for looking up the 

relevant paths for the current machine. This provides 

the user with abstraction from the local storage, while 

the interactive data-analysis focuses on receiving a 

data-object of interest. An example use looks like this: 

db = DBManager()  # using paths from config file 

or 

db = DBManager(temp_path) # using temporary 

paths to test a new dataset. 

Finally, to receive data of interest, I simply do: 

data = db.get_file_id(id) 

This design abstracts me from distracting and 

disturbing long path management. 

PathManager:  Hand-in-Hand with the 

DataBaseManager, I employ what I call PathManagers. 

While sounding similar to manage database storage 

paths (those are managed by config files), this class is 

designed to help with data products during complex 

and long processing pipelines. Each project will have, 

either defined by others, or by the researcher 

themselves, a structure of paths where different levels of 

data, or metadata data for the actual data are stored.  

For spacecraft missions this results in a large list of 

possible paths below the database path, for each and 

every data sub-product and it is very time-consuming to 

manually keep track of these while performing real-time 

explorative data analysis.  

In recent projects I have implemented 

PathManagers to deal with this problem.  

Basically, a (currently hard-coded) class structure is 

defined that has attributes for each kind of sub-data 

paths underneath a common observation id. Often, the 

actual file paths are named in strategic ways to enable 

alpha-numeric sortability, but those are usually not 

supportive for real-time data analysis, for being hard to 

remember or overly structured. The PathManager 

enables an abstraction layer between how products are 

stored on disk (=more structured) and how they are 

efficiently accessed during interactive data analysis 

(=more memorizable). 

For example, for a specific HiRISE observation ID, 

there are paths to many products related to one 

observation ID, like COLOR, RED, and combined 

mosaics.  

During explorative analysis, I am able to call up a 

PathManager object for a given OBSID and database, 

and an PathManager attribute called “red_mosaic” 

would provide the full path to that image product 

simply like so: 

pm = PathManager(obsid, db)  # receiving a 

DataBaseManager from above 

print(pm.red_mosaic) 

pm.red_mosaic now contains a long path starting 

from basic storage as managed by the 

DataBaseManager object, but also, inside that, for the 

given OBSID, a complex file name construct indicating 

the access path to the MOSAIC made from only the 

RED products, inside that database, under the given 
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OBSID folder. The beauty of it, again, is that all the 

distracting path management has been hidden and the 

user can focus on providing the path object to the next 

tool in the processing chain. 

Metadata searches: Finding data often involves 

the search through metadata. To enable this without 

using often cumbersome and mostly un-controllable 

web interfaces, the Planetary Data System archive re-

quires the delivery of a cumulative index file that 

summarizes a chosen set of metadata for each 

observation id of a data set.  

I have found a way to ingest these metadata tables 

into a pandas DataFrame for convenient search queries. 

However, one current problem is that each delivery to 

any of the PDS nodes comes with a new cumulative 

index file that is stored into a new subfolder. 

This creates problems for tool creators like me that 

want to provide the newest metadata for a given 

mission instrument.  

It basically would create the need to parse the html 

code for the most recent folder that can be found which 

could be done at a hacking session at this conference, 

but recently, the Rings-Moons node has implemented 

my suggesting to create these static URLs that will link 

to the most recent delivered cumulative index file. 

Using the remote database API that is provided by 

the PDS Rings-Moon node I created a tool that enables 

me to plug in an IMAGE_ID from a paper I read, 

retrieve the image, store it automatically at the right 

place using the above described DatabaseManager, and 

start a recalibration processing chain, if required. 

Abstraction:  For my efforts in creating a tool-set 

for planetary science in Python, similar to what 

`astropy` did for astrophysics, I believe it would be 

helpful to abstract these patterns into either a) 

configurable templates that should be easy adaptable 

for any new projects, so that it could become either part 

of the `planetpy` package, or b), become part of a so 

called “cookiecutter” project template that could be 

used to create a new software package for a new science 

project. 

I will provide concrete suggestions on how this 

could be done and am asking for community feedback 

on the best way forward.  

The above mentioned metadata approach using 

pandas `DataFrames` is ready to be implemented into 

the `planetpy` project, it might just be more or less 

cumbersome to add the most recent cumulative index 

file to the current project, depending on the willingness 

of the PDS node to provide static links to these files. 

Parallel processing: An often occurring case is the 

application of the same function on a large set of 

images or other data products. As these operations all 

occur in the subfolder of a given data product, these 

operations are all independent and can be executed in a 

parallel fashion without creating race conditions. These 

workloads are defined as being “embarrassingly 

parallel” and it is still not the case that available 

analysis suites provide easy-to-use toolsets to process 

these automatically across all cores on a multi-core 

desktop PC. Using the parallelization modules of 

IPython [1], I have implemented a few small tools that 

enable me to execute a function on a list of products 

easily, without having to think about setting up or 

starting parallel engines and such. This tool also 

provides feedback via a graphical progress widget, as 

provided by the Jupyter notebook tools. 

For the conference I will present and discuss these 

tools [2] using examples of my work with medium-

sized Citizen Science databases and planetary imaging 

data. 
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