
SUCCESSFUL DESIGN PATTERNS IN THE DAY-TO-DAY WORK WITH PLANETARY MISSION

DATA. K.-M. Aye, Laboratory for Atmosphere and Space Physics, University of Colorado Boulder, 1234 Innovation

Drive, Boulder, CO 80303 (michael.aye@lasp.colorado.edu)

Introduction: After several years of processing and

analyzing data from solar system missions and Citizen

Science data I have recognized a few repeating patterns

in the supporting software I created for working with

these data.

Specifically, for the case of explorative data

analysis, where it is often necessary to study and

compare data from different processing or quality

levels, or between the new derived product and the

incoming data, three support structures turned out to be

the most helpful patterns. These most prevalent patterns

are what I call path managers data (or database)

managers, and metadata searches.

For data processing, I have established a few simple

tools that enable me to execute embarrassingly parallel

workloads in parallel on multi-core machines without

getting into parallel programming details.

Data(base)Manager: Often one has to work with

different sources of data for the same analysis, either

because one production set is newer and/or not

published at the same source, or because one set has

been produced as a derivative from the other. Other use

cases include managing different versions of data

dumps where for regression checking it is important

that the same code can be executed easily with different

sets of incoming data.

In these cases, it is very helpful to define a software

tool (a Python class in my case) that helps with easy

finding and access to the different data.

The characterizing features are:

1) distinguish between and provide different

versions of datasets in the project storage folder; 2)

node/machine-dependent storage locations (e.g. laptops

usually have less capacity than desktops); 3), sub-

dataset retrieval functions that are able to filter the

currently active data-set for keywords and/or ranges of

parameters, easily providing a subset for the ongoing

work task.

Node/machine-dependent storage locations can be

managed by a configuration file, that, once created, are

used by the DataBaseManager for looking up the

relevant paths for the current machine. This provides

the user with abstraction from the local storage, while

the interactive data-analysis focuses on receiving a

data-object of interest. An example use looks like this:

db = DBManager() # using paths from config file

or

db = DBManager(temp_path) # using temporary

paths to test a new dataset.

Finally, to receive data of interest, I simply do:

data = db.get_file_id(id)

This design abstracts me from distracting and

disturbing long path management.

PathManager: Hand-in-Hand with the

DataBaseManager, I employ what I call PathManagers.

While sounding similar to manage database storage

paths (those are managed by config files), this class is

designed to help with data products during complex

and long processing pipelines. Each project will have,

either defined by others, or by the researcher

themselves, a structure of paths where different levels of

data, or metadata data for the actual data are stored.

For spacecraft missions this results in a large list of

possible paths below the database path, for each and

every data sub-product and it is very time-consuming to

manually keep track of these while performing real-time

explorative data analysis.

In recent projects I have implemented

PathManagers to deal with this problem.

Basically, a (currently hard-coded) class structure is

defined that has attributes for each kind of sub-data

paths underneath a common observation id. Often, the

actual file paths are named in strategic ways to enable

alpha-numeric sortability, but those are usually not

supportive for real-time data analysis, for being hard to

remember or overly structured. The PathManager

enables an abstraction layer between how products are

stored on disk (=more structured) and how they are

efficiently accessed during interactive data analysis

(=more memorizable).

For example, for a specific HiRISE observation ID,

there are paths to many products related to one

observation ID, like COLOR, RED, and combined

mosaics.

During explorative analysis, I am able to call up a

PathManager object for a given OBSID and database,

and an PathManager attribute called “red_mosaic”

would provide the full path to that image product

simply like so:

pm = PathManager(obsid, db) # receiving a

DataBaseManager from above

print(pm.red_mosaic)

pm.red_mosaic now contains a long path starting

from basic storage as managed by the

DataBaseManager object, but also, inside that, for the

given OBSID, a complex file name construct indicating

the access path to the MOSAIC made from only the

RED products, inside that database, under the given

6068.pdfInformatics and Data Analytics (2018)

OBSID folder. The beauty of it, again, is that all the

distracting path management has been hidden and the

user can focus on providing the path object to the next

tool in the processing chain.

Metadata searches: Finding data often involves

the search through metadata. To enable this without

using often cumbersome and mostly un-controllable

web interfaces, the Planetary Data System archive re-

quires the delivery of a cumulative index file that

summarizes a chosen set of metadata for each

observation id of a data set.

I have found a way to ingest these metadata tables

into a pandas DataFrame for convenient search queries.

However, one current problem is that each delivery to

any of the PDS nodes comes with a new cumulative

index file that is stored into a new subfolder.

This creates problems for tool creators like me that

want to provide the newest metadata for a given

mission instrument.

It basically would create the need to parse the html

code for the most recent folder that can be found which

could be done at a hacking session at this conference,

but recently, the Rings-Moons node has implemented

my suggesting to create these static URLs that will link

to the most recent delivered cumulative index file.

Using the remote database API that is provided by

the PDS Rings-Moon node I created a tool that enables

me to plug in an IMAGE_ID from a paper I read,

retrieve the image, store it automatically at the right

place using the above described DatabaseManager, and

start a recalibration processing chain, if required.

Abstraction: For my efforts in creating a tool-set

for planetary science in Python, similar to what

`astropy` did for astrophysics, I believe it would be

helpful to abstract these patterns into either a)

configurable templates that should be easy adaptable

for any new projects, so that it could become either part

of the `planetpy` package, or b), become part of a so

called “cookiecutter” project template that could be

used to create a new software package for a new science

project.

I will provide concrete suggestions on how this

could be done and am asking for community feedback

on the best way forward.

The above mentioned metadata approach using

pandas `DataFrames` is ready to be implemented into

the `planetpy` project, it might just be more or less

cumbersome to add the most recent cumulative index

file to the current project, depending on the willingness

of the PDS node to provide static links to these files.

Parallel processing: An often occurring case is the

application of the same function on a large set of

images or other data products. As these operations all

occur in the subfolder of a given data product, these

operations are all independent and can be executed in a

parallel fashion without creating race conditions. These

workloads are defined as being “embarrassingly

parallel” and it is still not the case that available

analysis suites provide easy-to-use toolsets to process

these automatically across all cores on a multi-core

desktop PC. Using the parallelization modules of

IPython [1], I have implemented a few small tools that

enable me to execute a function on a list of products

easily, without having to think about setting up or

starting parallel engines and such. This tool also

provides feedback via a graphical progress widget, as

provided by the Jupyter notebook tools.

For the conference I will present and discuss these

tools [2] using examples of my work with medium-

sized Citizen Science databases and planetary imaging

data.

References:

[1] Fernando Pérez, Brian E. Granger, IPython: A

System for Interactive Scientific Computing,

Computing in Science and Engineering, vol. 9, no. 3,

pp. 21-29, May/June 2007,

doi:10.1109/MCSE.2007.53. URL: http://ipython.org

[2] K.-Michael Aye, & jocu8995. (2016, November

11). michaelaye/pyciss: PathManager and databases

(Version v0.6.0). Zenodo.

http://doi.org/10.5281/zenodo.166116.

6068.pdfInformatics and Data Analytics (2018)

https://www.dropbox.com/referrer_cleansing_redirect?hmac=PTKnUa1Jg3rtojpkV%2BimJJ5Xi99%2B8iPW17v9HRQ0IMc%3D&url=http%3A%2F%2Fipython.org
http://doi.org/10.5281/zenodo.166116

