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Introduction: Several upcoming missions will fea-
ture Raman and LIBS spectroscopy for planetary explo-
ration on Mars (e.g. Mars 2020 SuperCam and SHER-
LOC). Supporting the scientific effort will require a
deeper understanding how to interpret Raman spectra of
mineral assemblages in soils and rocks. Unfortunately,
there is no underlying theoretical understanding of mix-
tures for Raman spectroscopy, and developing the nec-
essary theoretical basis for understanding Raman mix-
ing phenomena will take decades.

As an alternative, we are investigating a completely
different, original solution to extracting mineral abun-
dances from Raman data by combining Raman results
with LIBS using deep learning and data fusion. Raman
alone constrains what phase is present and the relative
cation proportions in each phase. LIBS provides the
total numbers of those cations, so the combination of
the two allows the proportion of each phase (the modal
abundance) to be obtained. This requires only knowl-
edge of the mineral formulas of each phase identified
by Raman, the associated algorithm for interpreting its
individual composition from peak position and the LIBS
total amounts of those cations.

Two-way Variational Autoencoder [1, 2, 3]: We
consider the marriage of two probabilistic models to de-
scribe the data. The first is a probabilistic model (M2
in [4]) that describes the spectra, x, as being generated
by a composition vector! y in addition to a latent, nui-
sance vector z. The joint distribution is assumed to fac-

torize as p(x,y,z) = p(y)p(z)p(x|y,z), so the data
are explained by the generative process:

p(y) = Dir(1) (1)
p(z) = U(-1.5,1.5) )
pg(X|y,Z) = f(x;y,z, 0) (3)

Here, p(y) and p(z) are prior distributions and
f(x;y,2,0) is a distribution whose parameters are
non-linear functions of y and z (e.g., diagonal Gaussian
N(1o(y,z); Xo(y,z))). We choose a uniform prior
over the simplex for compositions, Dir(1), and deep
neural networks with weights 6 for ug(y,z) and
39 (y,z). The second is a probabilistic model that de-
scribes the reverse process: nuisances and compositions
are generated by spectra,

q(x) =U(—,7)eg,7>0 4)
96(y|x) = g(y; %, ¢) (5)

By composition we will indicate mineral abundances for Raman
data or elemental compositions for LIBS data.

4 (2]x,y) = h(z;x,y, $) (6)

where ¢(x) is an uninformative, uniform prior,
gs(z|x,y) is a diagonal Gaussian parametrized by
a deep neural network as before, and v > 0. To
define ¢, (y|x) with support limited to the simplex, we
first draw an intermediate random variable, y, from a
diagonal Gaussian. We then pass y through a non-linear
transformation called a normalizing flow [5] which
conforms the Gaussian distribution to the simplex.

To learn the parameters, 6 and ¢, we optimize varia-
tional lower bounds on the marginal likelihoods of our
data samples [1, 2, 3]. The marginal likelihood for the
entire dataset is

Jr= Y Li@y+ > Lix O

(x,y)~P1 X~Pug
Jo= >, Lizy)+ > L(z) @
(x,y)~p1 Y~ Puy

for the forward and reverse models, respectively [1, 2,
3]. Asin [4], we introduce an additional discriminative
objective to each model that can be learned from the
labeled data:

‘77{1 = E(X’Y)N@L(ya y)7

where y can, for example, either be a sample from
¢4(y|x) or the mean of the distribution and L can, for
example, be KL(y || ¥); x is treated similarly using
po(x|y,z) and L =|| x — x ||>. We jointly optimize
both models as a weighted sum:

Ji = Ey)mp L%, %)

J =apJp —ofIt + oy — ol Je )

We learn the parameters 6 and ¢ by maximizing (9)
using Monte Carlo samples for the latent variables
—a technique known as stochastic gradient variational
Bayes [6] or stochastic backpropagation [7].

Data Fusion: The data fusion model incorporates
both LIBS and Raman data simultaneously. The ap-
proach requires that LIBS and Raman spectra be col-
lected from the same samples, thereby creating a dataset
consisting of IV trials, each measuring spectral intensi-
ties at S = L 4+ R channels (L = # of LIBS chan-
nels, R = # of Raman channels) with corresponding
mineral abundances for M minerals. Raman spectra
are captured for 567 binary mineral mixtures created in
the lab. For our training dataset, N = 189 samples,
M = 23 mineral types, L = 5485 LIBS channels, and
R = 1715 Raman channels. We hold out 378 sam-
ples to validate our data fusion approach. We use the
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Figure 1: We have 130 LIBS lab spectra obtained under Mars condi-
tions with matching known elemental compositions. We also have 500
additional samples acquired in the same conditions with unknown el-
emental compositions. Each spectrum contains 5485 channels. By
training the UVAE model to capture the relationship between these
two representations, we acquire the ability to generate synthetic LIBS
spectra. Specifically, training the UVAE results in learning the distri-
bution over LIBS spectra given elemental composition, p(x|y). We
can synthesize a new LIBS spectrum, x, from this distribution condi-
tioned on a specific elemental composition, y.

Raman Spectra LIBS Spectra
ID Channel itie ID Channel itie

0.0 200 1000 500 0.0 00 ... |[1
2 \
3
/SE—— R S
5

X ~P(X]Y) :

1
2
3
4
5

Matching
ID Mineral Abundances

Matching
ID__Elemental Composition :y:
0% 20% 80% 0% 0% 0% ... 1 0% 40% 20% 30% 0% 10% .. |~ ~*

1
2 2
3 3
4 4
5 5

\_/1

Convert Using Mineral
Formulae & Stoichiometry

Figure 2: We synthesize LIBS spectra for our mineral abundance pre-
diction challenge by 1) converting mineral abundances to elemental
composition using stoichiometry, 2) training the UVAE to model the
relationship between LIBS spectra and elemental composition, and
then 3) generating LIBS spectra conditioned on these elemental com-
positions using the UVAE model trained in step 2.

deep generative model described above, namely the Un-
tapped Variational Autoencoder (UVAE), to predict the
percent mineral abundances for 23 minerals given the
S-dimensional LIBS+Raman spectral data.

Synthesizing an Appropriate Dataset: The data fu-
sion scenario we consider assumes both Raman spec-
tra and LIBS spectra have been acquired in conjunction
with matching mineral abundance for each rock sample.
In practical in situ analyses one might only have access
to LIBS spectra and corresponding percent elemental
compositions for some samples and Raman spectra cor-
responding mineral abundances on other samples. In
order to simulate this scenario, we devise a process for
synthesizing matching LIBS spectra. First, we train a
UVAE to model the relationship between LIBS spectra
and elemental composition (see Figure 1). Next, we use

stoichiometry to convert atomic weights for each min-
eral to percent elemental composition. For each mea-

surement trial in our Raman dataset, we calculate the
percent elemental composition of a mineral mixture by
combining the elemental compositions of each mineral
in corresponding proportions. Then, using the trained
UVAE model, we generate LIBS spectra conditioned
on the derived elemental compositions from the Raman
dataset. This results in a LIBS+Raman spectral dataset
where the LIBS portion of the spectrum is synthetic,
however, deliberately crafted to mimic the real match-
ing LIBS spectra although with sometimes significant
loss in fidelity. The process is shown in Figure 2.

Predicting Mineral Abundances: We compare three
models: 1) a UVAE trained on Raman+LIBS spectra,
2) a UVAE trained on Raman only, and 3) PLS trained
on Raman only. In order to make predictions of mineral
abundances using the UVAE model, we utilize ¢(y|x).
We can either sample from this distribution or take the
mean of this distribution; in our results we use the mean.
Preliminary results show that including the LIBS spec-
tral data (even though synthetic!) is helpful in driving
down the error of predicting mineral abundances. Here,
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by each model for a single rock sample. The average KL divergence
for each model is given beside the model name in the legend. Mineral
names are on the x-axis while % abundance is on the y-axis.

we measure error as the average KL divergence between
the true mineral abundance of a rock sample and the pre-
dicted mineral abundance given by the model (lower is
better) on the held out validation set. Figure 3 shows the
percent mineral abundance for a selected sample as pre-
dicted by UVAE (red), PLS (blue), and actual (black).
The average KL divergence over all samples in the val-
idation set is quantified for each model in the legend.
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