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Introduction: Machine learning algorithms are 

now demonstrating human-level performance on some 
difficult benchmark problems, such as identifying ob-
jects in images. With the quantity of planetary data 
rapidly increasing, we would like to harness the power 
of machine learning to further advance planetary sci-
ence. However, most of the recent successes in ma-
chine learning depend on using massive, labeled sets of 
data to train the algorithms. For many planetary sci-
ence questions, such labeled data sets may not exist or 
it may not be possible to label data in such a way that 
would help to answer open-ended scientific inquiries. 
However, machine learning can improve the science 
return of remote sensors by increasing the speed at 
which scientists discover interesting patterns in their 
data. Interactive machine learning balances the 
strengths of machine learning to perform repetitive 
pattern recognition tasks, while empowering scientists 
to explore the factors that produce interesting patterns 
in large sets of data [1].  

Spectrometers are increasingly used in remote 
sensing, yet spectral data can be difficult to analyze 
due to its high-dimensionality and non-linear mapping 
to interpretable quantities. As part of the Mars Science 
Laboratory rover operations, ChemCam’s Laser-
Induced Breakdown Spectroscopy (LIBS) instrument 
collects fine-scale atomic spectra from targets up to 7m 
away [2]. Given the high number of ChemCam obser-
vations to date (>400,000) and the high dimensionality 
of LIBS spectra (~6000 channels), advanced analysis 
methods are needed. We present an unsupervised ma-
chine learning method for discovering surface compo-
sitional features on rocks in ChemCam targets [3]. Our 
approach uses interactive machine learning to (1) give 
a visualization of shot-to-shot relationships among 
LIBS observations on a single target, and (2) identify 
the wavelengths (or elements) involved in the trend. 
Using the insight that the precision of element abun-
dance is more reliable than accuracy [4], we bypass the 
quantification of elements, and look directly for pat-
terns of chemical gradients [5, 6]. Additional trends 
involving different chemistry can then be explored on 
the same target. We are working to extend this to 
search the full archive of ChemCam spectroscopy data 
to find similar geochemical trends among all targets. 

Machine Learning for Pattern Discovery: When 
machine learning is used for pattern discovery, we 
have data 𝑋 but do not have labels. Therefore, we use 
unsupervised machine learning which takes the form of 
probability density estimation, 𝑋 ~ 𝑃(𝜃), for a fixed 

distribution family 𝑃 and learned parameters 𝜃. The 
algorithm learns the distribution by inferring the opti-
mal parameters 𝜃 from the data, 
𝜃 = argmax!  [𝐿 𝑋; 𝜃 − 𝑅 𝜃 ], where 𝐿(𝑋;𝑃 𝜃 ) is 
the likelihood of the observed data given the probabil-
ity distribution 𝑃 𝜃 , and 𝑅 𝜃  is a regularization term 
that typically penalizes complex models. The structure 
of the probability distribution is typically the most in-
teresting aspect because it reveals interesting patterns 
about the data. Some examples include clustering 
which assumes that 𝑃 is a distribution with multiple 
modes (or centers of clusters); and probabilistic graph-
ical models which assume that 𝑃 is a multivariate joint 
distribution that can be factored compactly indicating 
direct dependencies. 

Gaussian Graphical Models: Our previous work 
demonstrates our method for visualizing shot-to-shot 
relationships among LIBS observations to discover 
geochemical trends [5,6]. Here we give some back-
ground information to understand the approach before 
discussing our recent work in identifying the geochem-
istry involved in discovered trends. Probabilistic 
graphical models [7], and specifically, Gaussian graph-
ical models (GGM) [8], are unsupervised learning 
models that assume that each data sample 𝑋 =
 (𝑥!, 𝑥!,… , 𝑥!) is a 𝑝-dimensional vector generated by 
a multivariate joint distribution. Furthermore, the 
probability distribution can be factored into a compact 
representation with just a few direct dependencies. The 
compact representation assumption is a statistical ne-
cessity for the robust estimation of a high-dimensional 
distribution from finite data; and it reveals interesting 
structure about the dependencies among variables. 

To analyze the depth trend of a rock target at a lo-
cation, we estimate partial correlations among spectra  
using the GGM algorithm. A partial correlation be-
tween shot A and shot B is the residual correlation 
after accounting for all other shots. Thus, a partial cor-
relation is an estimate of a direct dependency. If the 
partial correlation between A and B is 0 then A and B 
are conditionally independent. A GGM is estimated 
from a data matrix X, where each column Xj is a shot j 
with spectral values Xij for i in {1, …, n} wavelengths. 
The sample covariance matrix, Σ,  is calculated from 
X, then the best sparse approximation, Θ, to the partial 
correlation matrix for a given sparsity constraint, λ, is 
estimated. The number of non-zero partial correlations 
is controlled by the value of λ, which can be any non-
negative real number. 
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 The resulting GGM is displayed using a spring 
layout that places strongly correlated nodes near each 
other as if the correlation weights are springs pulling 
nodes together in space. If there are no systematic 
trends, then the non-zero partial correlations will ap-
pear on seemingly random pairs of shots, and the dis-
played GGM will look like an amorphous blob (or 
hairball in graph theory terminology). More visually 
interesting patterns emerge when there are interesting 
depth trends, such as a chain for systematic de-
crease/increase in elements, or clusters for sudden 
change in chemistry (such as a layer). This automated 
method identifies compositional depth trends associat-
ed with varnish and weathering rinds on laboratory 
samples [5]; and dust layers and thin sulfate veins on 
Mars targets [6]. We can see in the GGM Figure 1 (A) 
that there is a surface layer on the ChemCam target. In 
this case, it is a dust layer which we verified by look-
ing at the decrease in abundance of elements associat-
ed with martian dust (e.g., Mg [10]) and the increase in 
abundance with S and Ca. 

Explaining the Geochemistry: The GGM gives a 
quick visual summary of geochemical trends, but to 
answer specific science questions, we need to know the 
geochemistry behind the observed trend. We introduce 
an interactive Gaussian graphical model (iGGM) algo-
rithm in which the algorithm identifies the wavelengths 
in the LIBS spectra that are essential for producing the 
most prominent structures in the learned GGM. This 
set of wavelengths explains the geochemistry behind 
the trend. For example, in the Bell Island data, the 
most prominent structure in the learned GGM is the 
chain among the first several shots. Our iGGM algo-
rithm identifies the wavelengths that if they were 

masked from analysis, would make that chain disap-
pear as in Figure 1 (B). 

The iGGM algorithm identifies the critical wave-
lengths by searching though all possible subsets of 
wavelengths to find a subset of wavelengths that if 
they were masked would most change the structure of 
the learned GGM. The gradient of the weighted covar-
iance matrix is calculated with respect to the sample 
weights. Then a regularization term is placed on the 
number of weights that can be changed to avoid the 
trivial solution of masking all weights. The resulting 
masked wavelengths are those that are critical for pro-
ducing the trends seen in the GGM. iGGM also dis-
plays the newly learned GGM from the masked data as 
can be seen in Figure 1 which often reveals further 
geochemical trends in the same target. 

Future Work: We plan to extend this work to fa-
cilitate quickly searching through the entire data ar-
chive of ChemCam observations to find targets with 
similar geochemical trends. 
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Figure 1 Interactive machine 
learning  takes spectral data 
from a several LIBS shots 
(top) and learns a GGM (bot-
tom A) indicating geochemi-
cal trends in ChemCam tar-
gets. In this case a clear trend 
is present in the first several 
shots at the surface of the 
target. iGGM then identifies 
the wavelengths that are re-
sponsible for the major struc-
tures of the GGM. In this case, 
when those wavelengths are 
masked, iGGM learns a GGM 
without that surface feature 
(bottom B), which can now be 
used to investigate other geo-
chemical trends in the target.  
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