
SCALABLE DATA PROCESSING WITH THE LROC PROCESSING PIPELINES. K. N. Paris, N. M. Estes,
E. Cisneros, and M. S. Robinson, School of Earth and Space Exploration, Arizona State University, Tempe, AZ
85287.

Introduction: The Lunar Reconnaissance Orbiter

Camera (LROC) is a suite of three cameras onboard
the Lunar Reconnaissance Orbiter (LRO), which has
been systematically mapping the Moon since 2009 [1].
The LROC includes two Narrow Angle Cameras
(NACs) and one Wide Angle Camera (WAC) [2] that
collect hundreds of images each day, totaling over 2.2
million observations as of November 2017.

In addition to the science files, the LROC Science
Operations Center (SOC) generates and receives from
the Mission Operations Center (MOC) almost 100 oth-
er types of files. Many of the file types are necessary to
plan observations, facilitate science file processing,
and generate products for the scientific community and
the public. Keeping track of these diverse file types
requires a well thought out and scalable process for
future expansion or compression: additional file types,
additional processing steps to pipelines, retiring pipe-
lines, and future mission support.

Processing Strategy: There are four components
that have made the processing strategy for the LROC
SOC as successful as it is. These are 1) the processing
pipelines, 2) a mission database, 3) a job and resource
management software suite, and 4) a robust file sys-
tem.

Pipeline Scripts aka Procedures: Individual scripts
are referred to as “procedures” and collections of pro-
cedures relating to a particular file type are referred to
as “pipelines”. Each procedure is written to accomplish
a very specific task and can chain to other procedures
as necessary. This approach was taken to keep the
scripts uncomplicated for the ease of development and
reprocessing purposes, and to be able to simplify error
handling (reduce duplicate processing or rolling back
any processing performed).

The procedures are written in Bash. Bash was cho-
sen as the preferred language for read-ability by the
Operations staff (who aren’t necessarily software de-
velopers), who would be creating or updating the pipe-
lines. In some of the Bash scripts, there are calls to
programs that are written in C++ or Ruby where ap-
propriate (i.e. image processing or geometry calcula-
tions).

Whenever a file is received or generated by the
LROC SOC it is “ingested” – this is the process by
which the file and ancillary data are cataloged in a da-
tabase. After a file is ingested, it is passed to the “pipe-
line” for that file type where further processing occurs
via individual procedures.

The pipelines and procedures are named in a way
that makes it easy to identify which file type that pipe-
line processes and the order in which procedures are to
be executed. For example (Fig. 1): lroc_moc27_p30 is
the third step (p30) in processing of the moc27 file
type.

Figure 1: Example of the processing flow for a moc27
file type through the moc27 pipeline (black), EDR
pipeline (red), and CDR pipeline (purple).

Figure 1 is an example of a file being processed
through the several relevant pipelines. A science file is
received from the MOC (file type moc27) and submit-
ted to the ingest script where it is initially cataloged It
is then passed to the first step in the moc27 processing
pipeline which includes four procedures
(lroc_moc27_p10 – p40).

The first procedure compares the values in the sci-
ence file header to the expected values that are stored
in the database, and creates and updates fields in the
database to indicate that a science file for an observa-
tion has been received. The p10 procedure then sub-
mits the science file to the second (p20) procedure,
which updates specific timing-related fields in the da-
tabase for the observation and passes the file onto the
p30 script. The third procedure (p30) checks the file
for validity and computes statistics from the image
data and sends the file to the final procedure in the
moc27 pipeline (p40). The fourth procedure (p40) re-
views the image statistics, checks for housekeeping
and SPICE data and computes the data quality id for
the observation. Assuming that all of the necessary

6059.pdfInformatics and Data Analytics (2018)

data are present for the science file, the
lroc_moc27_p40 procedure then submits the science
file to the EDR pipeline, which starts with the
lroc_edr_p10 procedure. Assuming success in the p10
and p20 procedures, the file is submitted to the final
procedure in the EDR pipeline and also to the first pro-
cedure in the CDR pipeline.

Whenever a job fails, the user is made aware of it
via the Rector interface [3]. The output of the script is
saved for review and mitigation development. Once
the necessary mitigation steps have been taken for suc-
cessful processing, the job is resubmitted to the pipe-
line that it failed out of and processing can proceed.

Database: The LROC SOC uses a PostgreSQL da-
tabase to track received files and track the status of the
processing for the files. A record is created for each
file received and meta-data captured from the file.
Most commonly, this meta-data consists of the start
and end times of a file, the delivery time, file md5
checksum and file path in the file system.

Resource Management. Unless paused, the pipe-
lines are always “on” and available to process whenev-
er jobs are submitted. This requires careful resource
management on the processing cluster, which is done
by an in-house developed program called Rector. More
information about the Rector software can be found in
the “Taming Pipelines, Users, and High Performance
Computing with Rector” [3].

File System: The LROC SOC maintains a fully re-
dundant 2.3 Petabyte storage array where project files
are organized and stored. The storage array is shared
via the NFS protocol to our SOC computer cluster, as
well as mission workstations to facilitate sharing
LROC files. Cluster nodes make use of locally at-
tached disks for pipeline processing. If new file prod-
ucts are generated, that pipeline step will move the file
product to the shared storage array.

Development and Testing: The LROC pipelines
are under version control using Subversion control
software [4]. Any script that is related to the pipelines
and the pipelines themselves are stored in the same
subversion project. When updates are made to any of
the software, it is deployed to a separate test cluster,
integration testing performed, and when successful,
committed to the subversion project. Once testing is
successful and the changes committed, a new release is
tagged, the affected pipelines are paused by the Opera-
tions staff, and the newly tagged subversion project is
deployed to the production file system.

Evolution of the Pipelines: The pipelines started
off as a simple set of scripts for ingesting and pro-
cessing files as they are received. As the mission con-
tinued and operations evolved the pipelines have ex-
panded into a set of 132 procedures to handle new file

types requested from the MOC, some error handling
situations could be handled automatically, and added
steps to increase the usability of the data for the greater
science community. Several key lessons learned during
the evolution process are described in detailed below.

Timing Challenges: Given the uncertainty in timing
of file delivery and the dependencies of some file types
on others, one of the biggest challenges faced was how
to process files in the right order when they aren’t nec-
essarily received in an required order. For example,
processing a science file requires SPICE files and
housekeeping telemetry files which may come before
or after the science file itself.

To mitigate the problem of file delivery timing,
meta-data for each file are stored in the database, in-
cluding file type for each file and the start and end
times for files where those data exist. A separate non-
pipeline script was written and uses this meta-data to
determine if given file types exists for a particular ob-
servation or science file. This script is called by each
pipeline for which there is a file processing dependen-
cy. In the example of the science file processing, the
script is called in the science file pipeline, SPICE file
pipelines, and in the housekeeping pipeline. This en-
sures that no matter what the delivery times of the files
are, the science file can be processed automatically.

Keep multiple instances of a job from running: In
situations when one job is resource-intensive, multiple
instances that job running at the same time was be
problematic. This would cause computers on the clus-
ter or the production database to greatly slow down,
which affects the Operations staff and anyone else uti-
lizing the processing cluster. To deal with this, lock
files were implemented so that when one instance of a
job starts, it checks for a lock file before starting the
intensive work and if a lock file exists, the job waits
and checks for the lock file’s existence at set intervals
(i.e. 30-60 seconds). If a lock file does not exist, the
script creates a lock file to prevent other instances of
the job from running.

Reprocessing: Files need to be reprocessed as cali-
bration is updated, geometry is improved, or for any
other myriad of reasons. The pipelines were written in
such a way that jobs can be submitted to a single pro-
cedure to kick-off reprocessing of particular files or
file types.

Future work: Future work will focus on transfer-
ring knowledge and processes to new missions current-
ly in development, as well as continued refinement for
the LRO mission.

References: [1] Chin et al., Space Sci Rev (special
issue. [2] Robinson et al., Space Sci Rev. [3] Estes et
al., submitted this volume. [4]
https://subversion.apache.org/

6059.pdfInformatics and Data Analytics (2018)

