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Introduction:  The Compact Reconnaissance Im-

aging Spectrometer for Mars (CRISM) on the Mars 

Reconnaissance Orbiter began acquiring hyperspectral 

images from 0.362 to 3.92 µm in 2006 [1]. The long 

wavelength portion of the data have radiative streams 

that include both solar and thermal terms from the sur-

face and atmosphere. We use the DISORT radiative 

modeling code to simulate both solar and emission 

radiative streams, predicting spectral radiance and IOF 

(radiance/solar radiance) on sensor. We use a neural 

network (NN) approach to simultaneously retrieve sur-

face spectral single scattering albedos and temperature 

maps. The NN is trained with numerous laboratory-

based spectra chosen to represent the range of possible 

soils and rocks on Mars, together with use of DISORT 

outputs that cover a range of SSA and surface tempera-

ture values. This approach alleviates the need to as-

sume that any given Martian spectrum is a linear com-

bination of dark and bright area spectra [2][3]. Further, 

DISORT treats solar surface radiative streams as bidi-

rectional and emission streams as directional hemi-

spherical values for modeling surface SSA spectra, and 

surface temperatures, gases, and dust and ice opacities. 

DISORT mapping is implemented as a look-up table 

with interpolations so it is challenging to retrieve 

unique temperature and SSA spectra for each pixel.  

NN design:  Input and output design. For NN pro-

cessing we utilize 491 nodes and for each CRISM sce-

ne we input IOF data from 1.4 to 3.85 µm  (320 

bands), SSA spectra from 1.4 to 2.5 µm (169 bands), 

which can be uniquely retrieved from the DISORT-

based look-up table between IOF and SSA value be-

cause temperatures are not relevant in this wavelength 

region. We aim to estimate single scattering albedo at 

longer wavelengths and surface temperatures. There-

fore 152 nodes with SSA data from 2.5 to 3.9 µm 

(called SSA_post in Fig. 1), and estimated tempera-

tures are designed as outputs of the NN.  

Hidden layers and nodes. According to Funahashi 

[4] and Hornik [5], any continuous function on a 

bounded interval can be approximated by a single hid-

den layer neural network. It is reasonable to assume the 

inverse of the DISORT look-up table is a continuous 

function, therefore we use a one layer NN (in Fig. 1). 

We design the number of hidden nodes as equal to the 

number of inputs, which is 491. The activation function 

is chosen as reLU defined as ( ) max(0, )f x x  for all 

hidden nodes, therefore unknown parameters for this 

NN are the weights on the edges.  

 
Fig. 1. Flow chart of designed Neural Network. 

Dataset. Mars analog laboratory spectral data are 

used to train the unknown weights in our NN. Because 

there are~300,000 unknown weights, 300,000 training 

examples are generated. Each training example con-

tains one lab-based SSA spectrum or combinations of 

these spectra (320 bands), one temperature, three geo-

metric parameters, and a corresponding IOF cube (320 

bands) generated from the DISORT model. SSAs are 

randomly chosen from the laboratory spectra, tempera-

tures are randomly generated using a reasonable range, 

and geometric parameters are chosen for each pixel in 

a scene. We assume that we know the SSA spectral 

data for 1.4 to 2.5 µm, because, as noted there is a 

unique mapping from IOF to SSA, i.e., there are no 

temperature effects at Martian surface temperatures 

(~230 to 300 K).  

Training.  To train the NN we estimate the 2.5 to 

3.85 µm SSA spectra and temperature for each pixel 

and compare these to input values, using a backpropa-

gation method (shown in Fig. 2) to minimize the sums 

of squares of deviations between actual and predicted 

values. The result is a NN tuned to estimate SSA spec-

tra and temperatures for pixels for each scene. Regular-

ization is needed to avoid NN over-fitting of the train-

ing set. An L-2 norm regularization is used and the 

regularization weight is chosen by cross validation. 

Performance analysis:  We test our performance 

for CRISM scene FRS00028346 covering the Curiosity 

Mars rover landing site and traverse locations. 
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Fig. 2. Backpropagation flow chart. 

Predicted Temperature Errors.  To explore the sen-

sitivity to temperature predictions we generated a test 

data set of SSA spectra, trained the NN, and ran the 

procedure to estimate SSA and temperatures. The av-

erage training and test errors are both around 1.3 K for 

this scene for temperature range 260~285 K. Our NN 

approximates the inverse of DISORT mapping well. 

 Real data.  The IOF cube for FRS00028346 in Fig. 

3 covers Hummocky Plains (brighter area) and part of 

the Bagnold Dune (darker area) within Gale crater. The 

temperature mapping from NN for this scene is shown 

in the bottom of Fig. 4. Another temperature mapping 

from a thermal model [5] shown in the top of Fig.4 has 

been calibrated using Curiosity’s Remote Environment 

Monitoring Station (REMS) surface temperature (268 

K [6]) of Hummocky Plains in Fig 4. The NN estimate 

is 268.8 K, which is very close to the measured tem-

perature. Moreover, the NN temperature mapping 

matches the pattern of the thermal model (Dune Field 

is warmer than Hummocky Plains). SSA spectra are 

shown in Fig. 5, retrieved from Dune Field and Hum-

mocky Plains (Fig. 4). The spectra of the Hummocky 

Plains retrieved from the model and NN-based temper-

atures are similar for both estimates due to similar tem-

perature estimates. The NN-based spectrum for the 

Dune Field is different than the one retrieved from the 

model temperature, likely because the model tempera-

ture was estimated at hundred meter scales. The NN 

estimate is based on 18 m scales and captures more of 

the sun-facing dune surfaces in this afternoon scene. 

 
Fig. 3 IOF sensor space cube for FRS00028346 shown 

in RGB with 1.401 µm, 1.994µm and 2.510 µm. 

        Future work:  1. We have focused on generating 

a NN with the corresponding regularization weight to 

approximate the inverse of DISORT mapping for one 

scene (fixed atmosphere parameters). In the future, we 

plan to broaden the scope of the training data to in-

clude multiple scenes. 2. We also plan to apply the NN 

approach to Mars Express Observatoire pour la Miner-

alogie, l’Eau, les Glaces et l’Activite (OMEGA) [7] 

data. OMEGA covers ~0.5 to 5.2 µm and the longer 

wavelengths should provide an excellent way to sepa-

rate SSA and temperatures. Plans include cross-

comparison of CRISM and OMEGA results for the 

same areas and times.  

 
Fig. 4 The top is a sensor space temperature map from 

the thermal model and the bottom is from the NN. The 

colorbars in the right show temperature range in Kel-

vin. Curiosity landed in the area shown at the end of 

the Hummocky Plains arrow.  

 
Fig. 5 SSAs retrieved from Dune Field and Hummocky 

Plains in Fig. 4 for different temperature estimates.  
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