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Introduction:  Many planetary spectroscopy in-

struments such as ChemCam, SuperCam, Alpha Parti-

cle X-Ray Spectrometer (APXS), Mossbauer, Plane-

tary Instrument for X-ray Lithochemistry (PIXL), 

Mini-TES, etc. collect point spectral data. Interpreta-

tion of these data is vital to the understanding of the 

geology of the targets and sites analyzed, but point 

spectral data are considerably more difficult to work 

with than images. Even for members of instrument 

teams, it can be challenging to apply new processing 

and analysis techniques to the data.  

We have developed the free and open-source Py-

thon Spectral Analysis Tool (PySAT) library and point 

spectra interface to enable the planetary community to 

process and analyze point spectra without requiring 

programming expertise. This work is distinct from, but 

complimentary to, PySAT development geared toward 

orbital imaging spectrometer data [1]. 

Data Format: PySAT uses the Pandas library [2] 

to efficiently store spectra and associated metadata in a 

single data frame. The primary format for point spec-

tral data is a comma-separated value (.csv) file with 

spectra and associated metadata stored in rows. The 

.csv file has two-level column labels with the top row 

indicating broad categories of data (e.g. wavelength, 

metadata, composition) and the second row indicating 

specific categories (e.g. ‘240.811’, ‘Target Name’, 

‘SiO2’). The PySAT point spectra tool can read indi-

vidual PDS-format “clean, calibrated spectra” (CCS) 

files from ChemCam into the PySAT .csv format. We 

also provide laboratory data from a Laser-Induced 

Breakdown Spectroscopy (LIBS) instrument at John-

son Space Center in the proper format to be used with 

PySAT. 

Capabilities:  

Preprocessing: The PySAT point spectra tool pro-

vides a number of useful preprocessing capabilities. 

Once loaded, data frames can be manipulated by re-

moving rows, splitting a single data frame, merging 

multiple data frames into one, multiplying all spectra in 

a data frame by a vector, or finding the derivative of 

each spectrum. Spectra in one data frame can also be 

interpolated onto the spectral channels from another 

data frame, a first step in combining data from different 

instruments.  

A mask, specified by a simple .csv file, can be ap-

plied to all of the spectra in a data frame, and spectra 

can be normalized to the integrated signal within speci-

fied wavelength range(s). Spectra can also be grouped 

into a number of “folds” in preparation for model vali-

dation and testing, with the folds stratified on a single 

column of the data frame’s metadata (for example, the 

SiO2 content) to ensure a similar distribution of that 

variable in each fold. PySAT leverages the scikit-learn 

machine learning library [3] to enable several different 

dimensionality reduction methods: principal compo-

nents analysis (PCA), two different independent com-

ponent analysis (ICA) algorithms, as well as t-

distributed stochastic neighbor embedding (t-SNE), 

and Locally Linear Embedding (LLE). The PySAT 

library also includes a number of continuum removal 

algorithms provided by [4]. We have also implemented 

several outlier removal methods, including Isolation 

Forest, Local Outlier Factor, One-class SVM, and El-

liptic Envelope. 

 We have also added a “peak area” method which 

identifies local minima and maxima in the spectra, 

sums the signal between the minima, and saves the new 

value under the wavelength of the maximum. This ef-

fectively collects the signal from a peak into a single 

channel, shrinking the data set. This has been shown to 

improve calibration based on weak emission peaks [5]. 

Future updates will include true peak-fitting capabili-

ties. 

Regression: Regression methods can be used to 

generate models capable of converting observed spec-

tra into predictions of target properties, such as chemi-

cal composition. PySAT leverages scikit-learn [3] to 

allow users to train a variety of regression models, in-

cluding: Automatic Relevance Determination (ARD), 

Bayesian Ridge Regression (BRR), Elastic Net, Gauss-

ian Process Regression, Least Angle Regression 

(LARS), least absolute shrinkage and selection opera-

tor (Lasso), Ordinary Least Squares (OLS), Orthogonal 

Matching Pursuit (OMP), Partial Least Squares (PLS), 

Ridge regression, and Support Vector Regression 

(SVR). To assist users in identifying the optimal pa-

rameters for these methods, a flexible cross validation 

option is available using the stratified folds defined in 

preprocessing.  

Once a regression model has been trained, it can be 

used for prediction. If multiple models have been 

trained, they can be combined to implement submodel 

regression [6]. The current ChemCam calibration uses 

blended PLS submodels [7], but there is no require-

ment in PySAT that the same regression method be 

used for all submodels, providing added flexibility. 

The ranges over which the submodels are blended in 
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PySAT can optionally be optimized based on perfor-

mance on training data. 

Visualization: PySAT also includes Matplotlib-

based [8] options for producing point and line plots, as 

well as plots of scores and loadings to visualize PCA 

and ICA results. Figure 1 shows some example plots. 

Interface: We have also developed a graphical us-

er interface based on PyQt5 [9] to make all of the 

above capabilities accessible for non-programmers. 

The graphical interface is based on the concept of 

“workflows”, comprising individual processing steps or 

“modules” arranged in a user-specified order. The in-

terface includes a progress bar to indicate when the 

program is running a calculation. As each module is 

run it is grayed-out, indicating progress through the 

workflow. A console view at the bottom of the inter-

face prints messages as the modules run. The interface 

allows users to re-run or delete the last module, and 

stop the run partway through. 

Once the user has determined the optimal order for 

the steps in the workflow, it can be saved and restored 

at a later date. This saving and restoration process uses 

Python’s “Pickle” capability, and provides a conven-

ient way to store and later replicate the exact pro-

cessing steps involved in deriving results from a data 

set. For example, the methods and plotting commands 

used to produce the results and figures in a publication 

could be stored and included as supplemental infor-

mation along with the manuscript. 

Future Work: Both the PySAT point spectra tool 

GUI [10] and the underlying code containing the core 

functionality of PySAT for point spectra [11] are avail-

able on github. As development continues, several ad-

ditional capabilities will be added, including: clustering 

and classification; calibration transfer; and interactive 

plotting. The course of development and prioritization 

of different features will also be guided by feedback 

from users. We will also work to fully document the 

tool and develop tutorials. 

Although the tool was designed primarily based on 

analysis of LIBS spectra, it can be easily applied to any 

other spectral data. The tool provides a flexible and 

powerful framework enabling scientists to process and 

analyze spectral data using multivariate and machine 

learning methods, leading to improved scientific re-

sults. 
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Figure 1: Top: Cross validation results for a PLS 

model of SiO2 based on LIBS spectra. Middle: Plot of 

the PCA scores for the first two principal components 

of a database of LIBS spectra. Points are color coded 

according to MgO content. Bottom: The corresponding 

PCA loadings for the first two components. 
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