
THE PYTHON SPECTRAL ANALYSIS TOOL (PYSAT) FOR POWERFUL, FLEXIBLE, AND EASY

PREPROCESSING AND MACHINE LEARNING WITH POINT SPECTRAL DATA R.B. Anderson1, N.

Finch1, S. Clegg2, T. Graff3, R.V. Morris3, J. Laura1; 1U.S. Geological Survey, Astrogeology Science Center, Flag-

staff, AZ (rbanderson@usgs.gov); 2Los Alamos National Laboratory, 3NASA Johnson Space Center.

Introduction: Many planetary spectroscopy in-

struments such as ChemCam, SuperCam, Alpha Parti-

cle X-Ray Spectrometer (APXS), Mossbauer, Plane-

tary Instrument for X-ray Lithochemistry (PIXL),

Mini-TES, etc. collect point spectral data. Interpreta-

tion of these data is vital to the understanding of the

geology of the targets and sites analyzed, but point

spectral data are considerably more difficult to work

with than images. Even for members of instrument

teams, it can be challenging to apply new processing

and analysis techniques to the data.

We have developed the free and open-source Py-

thon Spectral Analysis Tool (PySAT) library and point

spectra interface to enable the planetary community to

process and analyze point spectra without requiring

programming expertise. This work is distinct from, but

complimentary to, PySAT development geared toward

orbital imaging spectrometer data [1].

Data Format: PySAT uses the Pandas library [2]

to efficiently store spectra and associated metadata in a

single data frame. The primary format for point spec-

tral data is a comma-separated value (.csv) file with

spectra and associated metadata stored in rows. The

.csv file has two-level column labels with the top row

indicating broad categories of data (e.g. wavelength,

metadata, composition) and the second row indicating

specific categories (e.g. ‘240.811’, ‘Target Name’,

‘SiO2’). The PySAT point spectra tool can read indi-

vidual PDS-format “clean, calibrated spectra” (CCS)

files from ChemCam into the PySAT .csv format. We

also provide laboratory data from a Laser-Induced

Breakdown Spectroscopy (LIBS) instrument at John-

son Space Center in the proper format to be used with

PySAT.

Capabilities:

Preprocessing: The PySAT point spectra tool pro-

vides a number of useful preprocessing capabilities.

Once loaded, data frames can be manipulated by re-

moving rows, splitting a single data frame, merging

multiple data frames into one, multiplying all spectra in

a data frame by a vector, or finding the derivative of

each spectrum. Spectra in one data frame can also be

interpolated onto the spectral channels from another

data frame, a first step in combining data from different

instruments.

A mask, specified by a simple .csv file, can be ap-

plied to all of the spectra in a data frame, and spectra

can be normalized to the integrated signal within speci-

fied wavelength range(s). Spectra can also be grouped

into a number of “folds” in preparation for model vali-

dation and testing, with the folds stratified on a single

column of the data frame’s metadata (for example, the

SiO2 content) to ensure a similar distribution of that

variable in each fold. PySAT leverages the scikit-learn

machine learning library [3] to enable several different

dimensionality reduction methods: principal compo-

nents analysis (PCA), two different independent com-

ponent analysis (ICA) algorithms, as well as t-

distributed stochastic neighbor embedding (t-SNE),

and Locally Linear Embedding (LLE). The PySAT

library also includes a number of continuum removal

algorithms provided by [4]. We have also implemented

several outlier removal methods, including Isolation

Forest, Local Outlier Factor, One-class SVM, and El-

liptic Envelope.

 We have also added a “peak area” method which

identifies local minima and maxima in the spectra,

sums the signal between the minima, and saves the new

value under the wavelength of the maximum. This ef-

fectively collects the signal from a peak into a single

channel, shrinking the data set. This has been shown to

improve calibration based on weak emission peaks [5].

Future updates will include true peak-fitting capabili-

ties.

Regression: Regression methods can be used to

generate models capable of converting observed spec-

tra into predictions of target properties, such as chemi-

cal composition. PySAT leverages scikit-learn [3] to

allow users to train a variety of regression models, in-

cluding: Automatic Relevance Determination (ARD),

Bayesian Ridge Regression (BRR), Elastic Net, Gauss-

ian Process Regression, Least Angle Regression

(LARS), least absolute shrinkage and selection opera-

tor (Lasso), Ordinary Least Squares (OLS), Orthogonal

Matching Pursuit (OMP), Partial Least Squares (PLS),

Ridge regression, and Support Vector Regression

(SVR). To assist users in identifying the optimal pa-

rameters for these methods, a flexible cross validation

option is available using the stratified folds defined in

preprocessing.

Once a regression model has been trained, it can be

used for prediction. If multiple models have been

trained, they can be combined to implement submodel

regression [6]. The current ChemCam calibration uses

blended PLS submodels [7], but there is no require-

ment in PySAT that the same regression method be

used for all submodels, providing added flexibility.

The ranges over which the submodels are blended in

6045.pdfInformatics and Data Analytics (2018)

PySAT can optionally be optimized based on perfor-

mance on training data.

Visualization: PySAT also includes Matplotlib-

based [8] options for producing point and line plots, as

well as plots of scores and loadings to visualize PCA

and ICA results. Figure 1 shows some example plots.

Interface: We have also developed a graphical us-

er interface based on PyQt5 [9] to make all of the

above capabilities accessible for non-programmers.

The graphical interface is based on the concept of

“workflows”, comprising individual processing steps or

“modules” arranged in a user-specified order. The in-

terface includes a progress bar to indicate when the

program is running a calculation. As each module is

run it is grayed-out, indicating progress through the

workflow. A console view at the bottom of the inter-

face prints messages as the modules run. The interface

allows users to re-run or delete the last module, and

stop the run partway through.

Once the user has determined the optimal order for

the steps in the workflow, it can be saved and restored

at a later date. This saving and restoration process uses

Python’s “Pickle” capability, and provides a conven-

ient way to store and later replicate the exact pro-

cessing steps involved in deriving results from a data

set. For example, the methods and plotting commands

used to produce the results and figures in a publication

could be stored and included as supplemental infor-

mation along with the manuscript.

Future Work: Both the PySAT point spectra tool

GUI [10] and the underlying code containing the core

functionality of PySAT for point spectra [11] are avail-

able on github. As development continues, several ad-

ditional capabilities will be added, including: clustering

and classification; calibration transfer; and interactive

plotting. The course of development and prioritization

of different features will also be guided by feedback

from users. We will also work to fully document the

tool and develop tutorials.

Although the tool was designed primarily based on

analysis of LIBS spectra, it can be easily applied to any

other spectral data. The tool provides a flexible and

powerful framework enabling scientists to process and

analyze spectral data using multivariate and machine

learning methods, leading to improved scientific re-

sults.

References: [1] Gaddis et al. (2017) Planetary Data

Workshop, #7060 [2] http://pandas.pydata.org/ [3]

http://scikit-learn.org/ [4] Giguere, S., Carey, C.J.,

Boucher, T., et al. (2013) Proc. 5th IJCAI Workshop

on Artificial Intelligence in Space. [5] Clegg, S.M. et

al. (2017) LPSC XLVIII, #2439 [6] Anderson, R.B., et

al. (2017) Spectrochim. Acta B, 129, 49–57.

doi:http://dx.doi.org/10.1016/j.sab.2016.12.003 [7]

Clegg, S. et al. (2017), Spectrochim. Acta B, 129, 64-

85. http://doi.org/10.1016/j.sab.2016.12.003 [8]

http://matplotlib.org/ [9]

https://riverbankcomputing.com/software/pyqt/intro

[10] https://github.com/USGS-

Astrogeology/PySAT_Point_Spectra_GUI [11]

https://github.com/USGS-Astrogeology/PySAT

Figure 1: Top: Cross validation results for a PLS

model of SiO2 based on LIBS spectra. Middle: Plot of

the PCA scores for the first two principal components

of a database of LIBS spectra. Points are color coded

according to MgO content. Bottom: The corresponding

PCA loadings for the first two components.

6045.pdfInformatics and Data Analytics (2018)

http://pandas.pydata.org/
http://scikit-learn.org/
http://doi.org/10.1016/j.sab.2016.12.003
http://matplotlib.org/
https://riverbankcomputing.com/software/pyqt/intro
https://github.com/USGS-Astrogeology/PySAT_Point_Spectra_GUI
https://github.com/USGS-Astrogeology/PySAT_Point_Spectra_GUI
https://github.com/USGS-Astrogeology/PySAT

