
A SANDBOX ENVIRONMENT FOR THE CSM STANDARD AND SPICE. T. M. Hare and J. R. Laura,

U.S. Geological Survey, Astrogeology Science Center, Flagstaff, AZ, 86001 (thare@usgs.gov).

Introduction: Camera or sensor models are a key
component of any digital photogrammetric system and
are used to accurately project remotely sensed
information (e.g., images) to the surface of a planetary
body. The U.S. Geological Survey’s Astrogeology
Science Center (ASC) has begun to develop and test
camera models using the Community Sensor Model
(CSM) standard [1, 2] in order to support
interoperability and broad use of planetary sensor
definition across a range of custom and off-the-shelf
software tools, as well as a RESTful SPICE web
service to remove the need to download, manage, and
version spacecraft positional and pointing information.
 Herein we present ongoing work ASC is
undertaking to provide a programming sandbox
environment for employing the CSM standard and
associated SPICE information. We define a sandbox as
a testing or development environment that allows
experimentation outside a given production
environment to help demonstrate and teach available
capabilities to others.

Background: A sensor model is a mathematical
description of the relationship between the three-
dimensional object (e.g. a target’s surface) and the
associated two-dimensional image plane. As described
in [3], the quantities needed to define a sensor model
can be divided in two broad categories: interior
orientation and exterior orientation (or intrinsic and
extrinsic matrices from the computer vision literature).
The interior parameters are intrinsic to the sensor
design and calibration and typically include focal
length, location of the principal point, and lens
distortions. For more complicated instruments, the
interior parameters may also include wavelength
dependencies, gain and pixel summing settings, and
(for pushbroom sensors) the timing of line exposures
and time delay integration (TDI) settings. The exterior
parameters describe the location and orientation of the
sensor with respect to the target’s reference coordinate
system. For planetary applications, this information is
typically stored in the form of SPICE (Spacecraft,
Planetary ephemeris, Instrument, C-Matrix, and Event)
kernels and delivered by the Navigation and Ancillary
Information Facility (NAIF, [4]).

The CSM Standard: The Community Sensor Model
(CSM) Working Group was established by the U.S.
defense and intelligence community with the goal of
standardizing camera models for various remote sensor
types [5]. The CSM standard, now at version 3.0.3, is a
framework that provides a well-defined application
program interface (API) for multiple types of sensors
and has been widely adopted by remote sensing
software systems. One of the changes from version
3.0.2 to 3.0.3 was the addition of variable target radii,

which enables planetary support (Figure 1). Previously,
only an Earth radius (WGS84) was available within the
standard.

It is worth noting that the CSM defines a standard
interface and does not make the creation of a camera
sensor model technically any easier as the
implementation details are left to the developer. By
defining a standard interface, the CSM supports
interoperability between different photogrammetric
applications making the development and maintenance
of multiple sensor models for similar instruments
unnecessary. The CSM API has been designed and
continuously tested by terrestrial industry experts and
expanded to support necessary planetary parameters.
Therefore, we assert that the planetary domain will
benefit significantly from the adoption of the CSM
standard that has more than decade of design history
and development by the CSM Working Group.

Last year our ASC programming team
implemented the MESSENGER Mercury Dual
Imaging System (MDIS) CSM framing camera model
for both the narrow angle and wide angle cameras
(NAC and WAC respectively) [2, 6]. In late 2017, we
expect to open source and release a pushbroom CSM
co-developed by BAE and ASC. This CSM is currently
being tested in BAE’s SOCET GXP for deriving
digital elevation models from MRO’s HiRISE and
CTX cameras [7] and LROC NAC cameras [8]. This
CSM will also be updated to handle HRSC [9].

CSM Sandbox: CSM code is written in C++ for both
performance and use of legacy code. In order to
facilitate broad use in exploratory environments,
improve testing, and support rapid prototyping, we
have wrapped the CSM using Cython
(http://cython.org/). By wrapping in Cython, we
provide Python bindings that can be widely used within
the scientific python computing ecosystem (and assert
that planetary science community adoption of python
continues to increase rapidly [11]). The effort applied
to wrapping the CSM has four benefits. First, all tests
are written in Python using the PyTest framework that
provides support for high level object mocking and
easy integration into continuous integration
environments. Second, Python bindings all use of the
CSM within the near ubiquitous Jupyter notebook [10]
environment. The Jupyter Notebook is a backend
python kernel and web server with a browser based
frontend that allows users to share code, equations,
visualizations, and any associated documentation
(http://jupyter.org/). Third, using Python provides a
single high-level language to access SPICE (SpiceyPy;
https://github.com/AndrewAnnex/SpiceyPy) and
support for planetary images using the Geospatial Data
Access Library (GDAL; http://www.gdal.org). Finally,
Jupyter notebooks were heavily used to prototype, in

6040.pdfInformatics and Data Analytics (2018)

http://cython.org/
http://jupyter.org/
https://github.com/AndrewAnnex/SpiceyPy
http://www.gdal.org/

Python, the algorithms for the C++ implementation of
the CSM standard.

CSM Availability: The ASC CSM implementation is
available throughout the development process under an
open source, public domain license that support
maximum reuse by the community. The underlying
CSM library (in C++) is built in a continuous
integration environment and available via the anaconda
(conda) package manager. The ASC maintains a public
facing build of the CSM. The Cython wrapper is
available via the ASC GitHub website
(https://github.com/USGS-Astrogeology/CSM-CyCSM) and
via a conda installable package for, at the time of
writing, linux-64 and OSX (Windows builds are
planned). Finally, the MDIS-NAC and MDIS-WAC
implementations are available via both distribution
mechanisms (http://bit.ly/CSM-CameraModel). We
intentionally separate the underlying library (C++), the
python wrapper (Cython) and our implemented camera
models (C++/Cython) to support modularity and
standard separation of concerns. Usage examples, as
we envision a developer or end-user performing
exploratory analysis, are available as Jupyter
notebooks in our CSM-SET (Sensor Exploitation Tool)
repository (http://bit.ly/CSMSET_Jupyter). Currently
the MDIS CSM is highlighted but we expect
pushbroom CSM examples to be available soon.

The last step to realize our CSM sandbox
environment is to more seamlessly be able to access the
NAIF supplied SPICE via a RESTful web service. A
proof-of-concept prototype has been started called
RESTful SPICE (https://github.com/USGS-
Astrogeology/Restful-Spice). It currently depends on
the Python libraries spiceypy, flask, and numpy. REST
is acronym for REpresentational State Transfer and
RESTful web services can be thought of as micro-
transactions to access simple http addresses. The goal
for this implementation is that given an image or
stereo-pair, allow the user to simply request the ISD
(Image Support Data) which contains the positional

description for each image as required by the CSM.
With the ISD in hand, the CSM can now be fully tested
within the sandbox environment.

Conclusion: Prototype development and subsequent
adoption of the CSM standard is the first step in
realizing highly interoperable sensor models that can
be used and shared across NASA’s and international
planetary missions. Using the CSM and SPICE web
service within an interactive Jupyter Notebook, we find
an ideal exploratory environment for sensor model
development, data analysis, validation, portability, and
finally the capability of demonstrating results to
collaborators.

Acknowledgments: This effort has been supported by
NASA’s Planetary Spatial Data Infrastructure (PSDI)
interagency agreement.
References: [1] Hare T. M. and Kirk R.L., 2017,
LPSC XLVIII, abs #1111. [2] Hare T. M., et al., 2017,
3rd Planetary Data Workshop, abs #7130. [3] National
Geospatial-Intelligence Agency, (2011), Frame Sensor
Model Metadata Profile Supporting Precise
Geopositioning, NGA.SIG.0002_2.1. [4] Acton, C.H.
1996, Planetary and Space Science, Vol. 44, No. 1, 65-
70. [5] Community Sensor Model Working Group,
(2010), Community Sensor Model Technical
Requirements Document, v. 3.0, NGA.STND.0017_3.
[6] Hawkins, S.E., Boldt, J.D., Darlington, E.H. et al.
Space Sci. Rev., 2007, 131: 247. doi:10.1007/s11214-
007-9266-3. [7] Fergason, R.L. et al., 2016, Space Sci.
Rev., 1572-9672, doi:10.1007/s11214-016-0292-x. [8]
Burns, K. N., et al., 2012, ISPRS,
doi:0.5194/isprsarchives-XXXIX-B4-483-2012. [9]
Kirk, R. L., et al., 2017, ISPRS, doi:10.5194/isprs-
archives-XLII-3-W1-69-2017 [10] Fernando Pérez,
Brian E. Granger, IPython: A System for Interactive
Scientific Computing, Computing in Science and
Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007,
doi:10.1109/MCSE.2007.53. URL: http://ipython.org.
[11] Laura, J. R., et al., 2015, LPSC XLVI, abs #2208.

Figure 1. The CSM API hierarchy diagram
with the updated class to support planetary
use. Image credit: CSM Working Group.

Class update

6040.pdfInformatics and Data Analytics (2018)

https://github.com/USGS-
https://github.com/USGS-
http://bit.ly/CSM-CameraModel
http://bit.ly/CSMSET_Jupyter
https://github.com/USGS-Astrogeology/Restful-Spice
https://github.com/USGS-Astrogeology/Restful-Spice
http://ipython.org/

