
Taming Pipelines, Users, and High Performance Computing with Rector. N. M. Estes, K. S. Bowley, K. N.
Paris, V. H. Silva, M. S. Robinson, School of Earth and Space Exploration, Arizona State University

Introduction: The Lunar Reconnaissance Orbiter
Camera (LROC) Science Operations Center (SOC) re-
ceives and processes ~450 gigabits of data every day.
These data get uncompressed and processed into engi-
neering data records (EDRs) and calibrated data
records (CDRs). During processing, there are many
steps to catalog, calibrate, calculate geometry, validate
end products, and many other steps (132 pipeline pro-
cedures in all), and it requires a well-designed system
to orchestrate all of these steps for thousands of prod-
ucts each week. In addition to this baseline processing,
users require a wide variety of tasks to be run on thou-
sands of images for map projecting, mosaicking, pho-
tometric correction, and other tasks. This processing is
currently coordinated by Rector over a 14-node pro-
cessing cluster running a total of 634 CPU cores.

The baseline requirements for the job management
system included the ability to automatically allocate
CPUs and RAM on a processing node, coordinate be-
tween hundreds of CPU cores over many nodes, pro-
vide a GUI interface for operations staff to monitor
processing and handle exceptions, and provide a way
for users to distribute arbitrary jobs across the cluster
without specialized knowledge. Before creating Rec-
tor, the LROC SOC evaluated several job control sys-
tems including HiRISE Conductor [1], Condor [2],
and Torque [3]. While these options handled some of
the requirements, no single solution met all require-
ments. After developing an initial prototype, the team
decided to develop a job control system that met all of
the needs of the LROC SOC.

Job Management: Rector handles two categories of
jobs: automated pipeline jobs and user jobs. These two
categories are handled differently to meet the needs of
the users of each job type. In both cases, the job
queues are managed via a central PostgreSQL data-
base using row exclusive locks to ensure that each job
runs only once. Logs of every job run by Rector are
also kept in the database with all information neces-
sary to re-run the job in the future if necessary.

The GUI interface for LROC SOC operations staff is
written using the Ruby on Rails framework. The Rec-
tor daemon that runs on each processing node, com-
mand line tools for job management, and administra-
tive tools are written in Ruby.

Pipeline Job Management: Pipeline jobs are auto-
mated procedures that ingest all files received from
the mission operation center and perform all necessary
processing steps to generate EDRs, CDRs, browse
products, histograms; as well as provide quality con-
trol, statistics calculation, and many other tasks neces-
sary for LROC operations. These jobs are managed
through a GUI interface (Figure 1) where the LROC
SOC operations staff can see all job status information
and handle any exceptions that may have occurred.
This interface provides a general overview of every
node in the cluster and every configured pipeline pro-
cedure, along with the ability to drill down to the fine
details if necessary (Figures 2, 3).

The pipeline procedure configuration allows for proce-
dures to be prioritized (for example, importing SPICE
kernels is a higher priority than producing CDR prod-
ucts). Operations staff can further control how things
are run by specifying a regular expression that gets
matched against the procedure name to control which
procedures are allowed to run on a given node.

Details on how the LROC pipelines work can be found
in the "Scalable Data Processing with the LROC Pro-
cessing Pipelines" abstract also submitted to this con-
ference.

User Job Management & Security: User jobs are
handled differently than pipeline jobs in Rector to al-
low arbitrary commands to be submitted to the cluster.
The command line tools for managing user jobs were
modeled after the high performance computing stan-
dard OpenPBS command line tools [4]. User jobs run
at a lower priority than pipeline jobs, and when run-
ning user jobs, Rector attempts to balance jobs submit-
ted by different users as much as possible. For exam-
ple, if user A is using all available CPUs in the cluster
and user B submits a set of jobs, as jobs finish, Rector

Figure 1: Small selection of pipeline procedures showing current procedure queue status as well as log status over
a user-defined time interval.

6039.pdfInformatics and Data Analytics (2018)

will start user B’s jobs in preference until the number
of CPUs used by user A and user B match, at which
time it will alternate between starting jobs from user A
and user B to maintain that balance. Likewise, if user
C also submits jobs, user C’s jobs will be selected in
preference until a balance between all three users is
achieved. Rector will never stop a running job. Priori-
tization and user-balancing only occur when Rector
selects a new job to run.

For security purposes, user jobs are run as the user
that submitted the job. This way the user’s normal per-
missions and access restrictions also apply to the jobs
they submit to Rector. Because these jobs are queued
in a central database and the user needs to be able to
access the database to add jobs to the queue, a security
mechanism is in place to ensure that users can only
submit jobs that run as themselves and that submitted
commands cannot be modified. To achieve this, each
user has a public/private key-pair for Rector. This pri-
vate key should be protected the same as any SSH,
PGP, or other private key. When submitting a job, the
job submission tool generates a cryptographic signa-
ture of the command to be run using the user’s private
key, and this signature is stored in the database. When
Rector selects a user job to run, it loads the user’s pub-
lic key and verifies that the signature matches the
command to run. After the initial setup of the key, this
process is completely transparent to the user, but if a
signature does not match a command, Rector will gen-
erate an error and refuse to run the job.

Results: To date, Rector has shepherded over 4.3 mil-
lion EDR and CDR products through the LROC pipe-
line. Between those products, and all the other pipe-
line procedures, Rector has run over 71.2 million
pipeline jobs since 2009. In addition to the pipeline
jobs, Rector has also been used to handle more than
40.1 million user jobs in that time.

Rector has proven to be a reliable and easy-to-use job
management tool at the LROC SOC. It has grown
from an initial processing cluster of 6 nodes and 12
CPU cores to the current cluster size of 14 nodes and

634 CPU cores. Rector’s prioritization capabilities al-
low the LROC SOC operations staff to manage how
jobs are run when necessary, but most of the time,
Rector’s own ability to manage resources handles all
job marshaling in a completely hands-off manner. The
job logging allows operations staff to look back on
processing history at any time, and job errors are pre-
sented to operations staff in an intuitive way that al-
lows human intervention when necessary.

Future Work: Rector currently has a limitation when
hundreds of short-duration jobs are submitted to a
cluster with a large number of CPU cores. Rector will
successfully run the jobs, but it will not use all avail-
able cores in that case due to the timing of the exclu-
sive lock necessary in the database to ensure that the
Rector daemons coordinate successfully between
themselves. To avoid this issue, it is recommended
that users avoid submitting jobs that run in less than
30 seconds. It is suggested that these short-duration
jobs be batched-up in chunks that take longer than 30
seconds, so that Rector is able to keep all cores in the
cluster running at full capacity. Work to eliminate that
inconvenience would be helpful given enough time in
the development schedule.

References: [1] Schaller, C.~J.\ 2006, 37th Annual
Lunar and Planetary Science Conference, 37 [2] Dou-
glas Thain, Todd Tannenbaum, and Miron Livny,
"Distributed Computing in Practice: The Condor Ex-
perience" Concurrency and Computation: Practice and
Experience, Vol. 17, No. 2-4, pages 323-356, Febru-
ary-April, 2005. [3] Torque http://www.adaptivecom-
puting.com/products/open-source/torque/ [4]
OpenPBS http://www.mcs.anl.gov/research/projects/
openpbs/

Figure 3: Node detail page showing a variety of Rec-
tor daemon and host diagnostic information.

Figure 2: List of nodes in the processing cluster with
summary information on procedures running, CPU
cores used, and other diagnostic information.

6039.pdfInformatics and Data Analytics (2018)

