Ground observation of asteroids at mission ETA. (fpaganelli@nccc.edu), ²LBTO/UHH (aconrad@lbto.org).

Introduction: NASA funding for ground-based support of spacecraft missions to small bodies has increased to enhance data science return. Thus emphasis for targeted asteroids (i.e. Lucy) data collected during observations carried out at ground-based observatories at mission estimated time of arrival (ETA), would provide to, and be recognized by, NASA as a valuable asset. Lucy, a SwRI mission proposal to study primitive asteroids among the Jupiter's Trojans, is one of five science investigations under the NASA Discovery Program [1]. Lucy's science payload/instrumentation is mirroring the New Horizons payload with: L'Ralph, Panchromatic and color visible imager and Infrared spectroscopic mapper (400nm -2.5µm); L'LORRI, highresolution visible imager (350-850 nm); L'TES, thermal infrared spectrometer is similar to OTES on the OSIRIS-REx mission (spectral range 5.71-100 µm (1750-100 cm-1); and radio science investigation will determine the mass of the Trojans by using the spacecraft radio telecommunications hardware to measure Doppler shifts [2].

Approach: Observations through the LBT Multi-Object Double Spectrographs (MODS 1) - Imager and spectrograph covering 0.32-1.1 microns with a 6'x6' FOV - has been targeted for this assessment [3]. The importance of some Eurybates members spectra show a drop off in reflectance shortward of $0.52\mu m$ - similar features are seen in main belt C-type asteroids and commonly attributed to the intervalence charge transfer transition in oxidized iron [4,5].

Mission	Number	Target	Vmag	Size (mas)	Albedo (µm)
Lucy	3548	Eurybates	16.8 to 17.7	13 to 20	0.052
	15094	Polymele	18.9 to 19.8	5 to 7	0.091
	11351	Leucus	17.8 to 18.8	7 to 11	0.079
	21900	Orus	16.9 to 17.9	11 to 16	0.075
	617	Patroclus	15.9 to 16.5	33 to 39	0.047
	52246	Donaldjohanson	18.3 to 20.1	2 to 4	

Figure 1. Lucy's Jupiter Trojan Asteroids albedo [4,5].

To derive Lucy targeted asteroids information for best ground-based observation at mission estimated time of arrival (ETA) we used data from JPL Horizons [6].

Lucy Mission	Encounter date	Location	Dia- meter (km)	Spectral type	ETA targets
Launch	Oct. 2021				
		Main			
DonaldJohanson	April 2025	belt	3.9	C	
Eurybates	Aug. 2027	Greeks	64	C	12 Aug 2027
Polymele	Sept. 2027	Greeks	21	Р	15 Sep 2027
Leucus	April 2028	Greeks	34	D	18 Apr 2028
Orus	Nov. 2028	Greeks	51	D	11 Nov 2028
			113/		
Patroclus/Menoetius	March 2033	Trojans	104	Р	02 Mar 2033

Figure 2. Lucy's Jupiter Trojan Asteroids ETA [1,2].

The workflow, shown in Figure 3, used *expect & tcl*, plus a *python* wrapper to access the JPL Horizons [6] database and

extract observations of targeted asteroids at twilight conditions. The derived data provide the best suitable opportunities to observe the asteroids using LBT ground observations.

Figure 3. Workflow/pipeline for data extraction.

Results: The extracted observations for all targeted asteroids outlined several opportunities for suitable LBT ground observations. However, only one was found to be suitable during close approach of Lucy ETA to asteroid Leucus, as shown in Figure 4.

DateUTHR:MM:	SS DateJDUT	A/	R.A(ICRF/J2000.0)DEC dRA*cosD d(DEC)/dt APmag S-brt Azi_(a-appr)_Elev	
2028-Apr-01 12:00:	01 2461863.000011574	A I	16 48 85.3186 -23 52 34.935 -2.83788 1.967876 18.61 8.16 188.7451 32.8568	
2028-Apr-02 12:00:	01 2461864.000011574	A I	16 48 82.0368 -23 51 47.257 -2.47764 2.839883 18.68 8.16 189.8228 32.7334	
2028-Apr-03 12:00:	01 2461865.000011574	A I	16 47 57.9864 -23 58 57.883 -2.91644 2.112877 18.59 8.15 198.8982 32.5952	
2028-Apr-04 12:00:	01 2461866.000011574	A I	16 47 53.1786 -23 58 86.889 -3.35331 2.184463 18.58 8.15 191.9734 32.4413	
2028-Apr-05 12:00:	01 2461867.000011574	A I	16 47 47.5929 -23 49 14.838 -3.78812 2.257843 18.57 8.15 193.8469 32.2716	
2028-Apr-06 12:00:	01 2461868.000011574	A I	16 47 41.2569 -23 48 19.543 -4.22879 2.329823 18.56 8.14 194.1184 32.8863	
2028-Apr-07 12:00:	01 2461869.000011574	A I	16 47 34.1662 -23 47 23.343 -4.65131 2.482888 18.55 8.14 195.1872 31.8853	
2028-Apr-11 03:00:	01 2461872.625011574	A I	16 47 82.3258 -23 43 44.342 -5.64235 2.488793 18.51 8.12 97.9176 -34.7549	
2028-Apr-12 03:00:	01 2461873.625011574	A I	16 46 51.7975 -23 42 40.171 -6.06957 2.558339 18.50 8.12 98.3785 -33.8980	
2028-Apr-13 03:00:	01 2461874.625011574	A I	16 46 48.5368 -23 41 34.262 -6.49439 2.628869 18.49 8.11 98.8227 -33.8234	
2828-Apr-14 83:88:	01 2461875.625011574	A I	16 46 28.5486 -23 40 26.614 -6.91652 2.689957 18.48 8.11 99.2744 -32.1558	
2828-Apr-15 03:00:	01 2461876.625011574	A I	16 46 15.8382 -23 39 17.225 -7.33564 2.759975 18.47 8.18 99.7268 -31.2858	
2028-Apr-16 03:00:	01 2461877.625011574	A I	16 46 82.4117 -23 38 86.892 -7.75148 2.838898 18.46 8.18 188.1776 -38.4134	
2028-Apr-17 03:00:	01 2461878.625011574	A A	16 45 48.2757 -23 36 53.215 -8.16346 2.908269 18.44 8.09 108.6294 -29.5403	
2028-Apr-18 03:00:	01 2461879.625011574	A I	16 45 33.4374 -23 35 38.595 -8.57145 2.978479 18.43 8.88 181.8817 -28.6658	
2028-Apr-19 03:00:	01 2461880.625011574	A	16 45 17.9847 -23 34 22.233 -8.97581 3.848684 18.42 8.88 181.5347 -27.7899	'
2828-Apr-28 83:88:	01 2461881.625011574	A I	16 45 81.6862 -23 33 84.131 -9.37388 3.118844 18.41 8.87 181.9885 -26.9129	
2828-Apr-21 03:00:	01 2461882.625011574	F A	16 44 44.7988 -23 31 44.293 -9.76743 3.188921 18.40 8.87 182.4433 -26.8347	
2028-Apr-22 03:00:	01 2461883.625011574	A I	16 44 27.2284 -23 30 22.723 -10.1555 3.258870 18.39 8.06 182.8995 -25.1554	
2028-Apr-23 03:00:	01 2461884.625011574	A I	16 44 09.0094 -23 28 59.426 -10.5377 3.320647 18.38 8.05 103.3570 -24.2752	
2828-Apr-24 83:88:	01 2461885.625011574	A I	16 43 58.1458 -23 27 34.488 -18.9136 3.398285 18.37 8.85 183.8162 -23.3941	
2828-Apr-25 83:88:	01 2461886.625011574	A I	16 43 38.6468 -23 26 87.678 -11.2828 3.459496 18.35 8.84 184.2773 -22.5123	
beenvation days fo	r Leucus are 22			

Considerations: This effort could be enhanced by integrated spacecraft, space telescope, and ground observatory missions. A possible space telescope would be SOFIA, while candidate ground station to be considered in future work is the European Southern Observatory (ESO) in Chile. Also, the 23m Fizeau Imaging on LBT could fill the pre-ELT gap (~ 2018 to 2023) for resolved imaging of Lucy mission targets via appulse events, which are estimated to occur approximately once per week [7].

References: [1] Levison H.F. and the Lucy Science team (2016) *LPSC 47th*, Abstract #2061. [2] Weaver H.A. et al. (2008) *Space Sci. Rev. 140(1-4)*, 75-91. [3] Rothberg B. et al. (2016) Astrophysics, arXiv:1608.00037 [astro-ph.IM]. [4] Fornasier et al. (2007) *Icarus, 190 (2)*, 622-642. [5] Fernadez Y.R. et al. (2009) *The Astro. J.* 138, 240-250. J. H. (1996) *LPS XXVII*, 1344–1345. [6] JPL Horizons: <u>ftp://ssd.jpl.nasa.gov/pub/ssd/Horizons_doc.pdf</u> [7] Conrad A. et al. (2017)_*AO4ELT5*, 1-8.