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Introduction: The Moon is ideal for studying
impact-cratering events that modify planetary surface
morphology and lunar craters degrade over time such
that their morphology changes as craters age. The study
of impact crater formation and degradation over time
(in the absence of strong weathering agents) provide
valuable insights into the current meteoritic impact rates
and surface target properties at scales relatable to future
human exploration efforts. The rate of degradation can
be estimated by the analysis of crater shapes at different
morphological states (from fresh to degraded) over an
exhaustive size-limited population of craters[1] within
a specific geologic unit. However, morphological
classification of a large population of craters, which
is the first step in any such analysis involves a visual
classification exercise which is repetitive, strenuous
and subject to human error inclusions. Ultimately,
this extremely time/resource-consuming step may
significantly delay and even deter scientific analysis
that could be achieved from morphologically classified
groups. By automating the repetitive exercise of visual
crater classification, consistent, efficient classification
can be achieved while analysis time is freed-up for
the user. Successful automation can also simplify the
classification and scientific analysis of larger, more di-
verse populations with little loss in time (at the expense
of computational power). We explore a novel deep
learning[2] based classification strategy in this work to
perform a binary classification task in planetary geology
(whether a small lunar crater (diameter < 300m) is
fresh or degraded) in this work. Specifically, a deep
convolutional neural network (CNN) machine learning
framework is utilized.

Deep Learning Method: TensorFlow[3] an open-
source library for machine learning algorithms and
Inception-v3, a deep learning model pre-trained with
ImageNet[4] (an academic benchmark for computer
vision) was used for this work. The pre-trained model
Inception-v3 can classify the ImageNet dataset of
150,000 images into 1000 classes with minimal error,
details can be found in [4]. ImageNet does not include
lunar crater images, thus the two classes of lunar craters
(fresh and degraded) are new to the pre-trained model.
Since re-training the full Inception-v3 model from
scratch is highly GPU intensive (may take weeks)
we use transfer learning technique to retrain for new
classes by using the existing weights (within the
CNN) for known classes[5]. Our hypothesis is that by
training only the final layer from scratch, reasonable
classification performance for a large number of craters

Figure 1: Selection of training to testing ratio of available
observations

(> 1000), could be achieved for our work, in as little as
thirty minutes on a laptop without GPU.

Training/testing images: Our testing and training
dataset consisted of 5,569 pre-classified reflectance im-
ages of small craters (single, centered crater per im-
age) acquired at 40 to 60 degrees incidence angle at the
Apollo 16 and 17 landing sites. Image rasters were input
as 8-bit JPEG files and had a resolution of 5 m/pixel.

Performance metrics: Performance of the trained
model was quantitatively obtained from 5 metrics (1)
Accuracy (ratio of correct classifications to the total ob-
servations), Recall (ratio of correctly classified fresh
craters to actual number of fresh craters), Precision (ra-
tio of correctly classified fresh craters to the total pre-
dicted fresh craters), F1-Score (weighted average of
Precision and Recall) and MCC (Matthews correlation
coefficient; a correlation coefficient between the ob-
served and predicted binary classifications.

The training vs testing ratio (number of observations)
was established by conducting a series of tests with dif-
ferent ratios (Figure 1). The 70/30 ratio (training to test-
ing) was adopted for the final training of the model (op-
timal values of performance metrics).

For the final results the model was trained and tested
100 times to evaluate the consistency of model perfor-
mance for each crater in the test set (n = 1670). Only
unambiguous decision (no conflicting decision in 100
trials) was used to obtain the final percentages of fresh
and degraded craters in the test set (Table 1). A crater
was tagged un-decided if one or more conflicting deci-
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Figure 2: A: Inverse relation of Recall and Precision, B: Pos-
itive linear relationship of MCC and F1-Score, corresponding
MCC scores are slightly lower

sion (fresh or degraded) was obtained during the 100
trials. Note that the confusion matrix represents 100
test runs also, and the average values of the computed
entries (true fresh, false fresh, true degraded, false de-
graded) are used to compute the final performance met-
rics (Table 2).

Results and Discussions: The deep learning based
method, achieved high values of overall accuracy
(87%). In addition, the MCC value is close to 0.7
(high predictive correctness boundary [6]) showing that
overall model performance is very good, even with
unequal true-class sizes in the training and testing data.
A large precision value ensures that more than 86% of
craters identified to be fresh will be fresh, such that a
trained deep learning model can successfully identify
and classify fresh craters without supervision. Desired
morphological properties can thus be further studied
for only fresh craters from a large group of craters
with minimal delay. We note however, the recall value
is moderate to high, meaning that a portion of fresh
craters will remain unidentified with our current model
or training approach.

The classified craters in both Apollo 16 and 17 sites
were further grouped to analyze performance for indi-
vidual sites. The deep learning classification obtained
fresh to degraded percentages similar to the manual
classification (ground truth). The implication is that
starting from a random sampling of nearly equal number
of crater images at the two sites, the deep learning based

Table 1: Deep learning based classification results
Classification Method ManualDeep Learning
Apollo Site 16 17 16 17
Total No. of Craters 849821 849821
%Fresh 31 21 34 24
%Degraded 69 79 56 67
%Undecided 0 0 10 9
Ratio (Degraded /Fresh)2.2 3.7 1.7 2.8

Table 2: Performance Metrics
AccuracyRecallPrecisionF1 ScoreMCC
0.86 0.67 0.87 0.76 0.67

Figure 3: Distribution of depth-to-diameter ratio from visual
and deep learning classification

classification can differentiate between the two sites as
Apollo 17 being more degraded that Apollo 16, an ob-
servation obtained in an earlier work[1]. The distri-
bution of depth-to-diameter ratio (depth obtained from
digital terrain models) for fresh and degraded craters
closely tracks (Figure 3) the true (manual classification)
distribution curve implies an unbiased classification per-
formance (if one class is preferentially identified cor-
rectly the distribution shapes will not match).

Conclusion and Future Work: Deep learning
based methods can drastically minimize the time for
classifying lunar crater morphological states from
crater images, boosting available time for class-specific
scientific analysis, e.g. estimation of degradation rates.
In our future work, a larger training dataset and a
modified learning strategy will be used.
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