
PDS4 CHALLENGES IN THE PSA. J. Saiz
1
, I. Barbarisi

1
, R. Docasal

1
, C. Rios

1
, A. Montero

1
, A. Macfarlane

1
,

C. Laantee
1
, S. Besse

1
, C. Vallat

1
, J. Marcos

1
, J. Arenas

1
, J. Osinde

1
, C. Arviset

1
,

1
ESA/ESAC, Camino Bajo del

Castillo s/n, Urb. Villafranca del Castillo, 28691 Villanueva de la Cañada, Spain, jsaiz@sciops.esa.int.

Introduction: The Planetary Science Archive

(PSA) [1] is the central repository where products from

all planetary missions of the European Space Agency

(ESA) are stored, following the standards given by the

Planetary Data System (PDS).

While legacy missions such as Giotto, Huygens,

Venus Express and SMART-1, the Rosetta mission,

currently in post-operations phase, and the still opera-

tional Mars Express, use the former PDS3 standard,

newer missions like ExoMars 2016, ExoMars RSP,

BepiColombo and Juice use or will use PDS4.

Design challenges: Adopting PDS4 as the stand-

ard for new missions while being compatible with pre-

viously existing PDS3 products in the same archive has

driven a design with several difficulties to overcome:

Common data model. The ESA planetary archive

maps the key metadata from PDS3 and PDS4 into a

common data model [2] with the intention of providing

transparency to the available data lookup services: the

main web portal from where products can be searched,

viewed and downloaded, the machine access interfaces

supporting the Planetary Data Access Protocol (PDAP)

[3] and the EuroPlanet-Table Access Protocol (EPN-

TAP) [4], as well as the FTP browser.

This common mapping is a result of a thorough

analysis of the commonalities shared by both standards.

Although fairly different in terms and format, their

basic concepts are similar. An effort has been made to

extract them into common categories (Figure 1).

Figure 1. PDS3 and PDS4 Data mapping

Bundle generator. PDS4 products are organised at

the top level into bundles [5]. Thus every delivery to

the PSA coming from a PDS4 mission is expected to

provide products within a bundle. Now, bundles have a

non trivial structure to work with.

In order to make it easier for data providers to re-

quest products for being ingested into the PSA, it is

permitted to deliver isolated products to the archive.

Then it is the PSA ingestion software that is responsi-

ble for creating the required bundle for its proper in-

gestion (Figure 2).

Figure 2. Schematic view of the ingestion process

in the PSA

Creating a bundle and its delivery file, however, is

not a straightforward operation, even for an automatic

process, as the following paragraphs describe.

Validation procedure. Delivery files are expected

to contain a transfer manifest, a checksum manifest and

a label file, because in PDS4 every data item, including

a delivery file, is considered a product, and each prod-

uct has to be accompanied by a label file. All these

have to be either validated, if a delivery file is passed

to the PSA, or created for the generated bundle, if we

talk about a single product delivery.

Subsequently, the data contents have to be validat-

ed too. This implies at least a syntax validation against

the corresponding schema version, but also consistency

checks to ensure that entities declared in the label files

match the actual delivered contents, as well as verify-

ing that values comply with schematron files.

The PSA will also delegate part of the validation

process to software tools provided by the PDS that are

yet to be incorporated.

6025.pdfInformatics and Data Analytics (2018)

Versioning of bundles, collections and products.

Every time a given bundle is (re)delivered to the PSA,

its version might be incremented. Bundle versioning is

managed by the PSA so that it is kept consistent within

the archive. The agreed convention with ESA missions

employing PDS4 is to increase the minor version every

week, and the major version every month. Therefore,

when a bundle is going to be ingested, it is required for

the ingestion process to look up and eventually retrieve

its previous versions for a proper processing.

Deleting products considered erroneous or invalid

by the data provider and reingesting them is a feature

of the PSA that only applies to products that are not yet

public. This task requires handling bundle and product

versions with care in order not to create an undesirable

maintenance problem.

Information Model (IM) versioning. Besides the

aforementioned difference between PDS3 and PDS4

that the PSA has to manage, this latter standard has its

own evolution. Roughly every six months, a new ver-

sion of the PDS4 standard is released by the PDS. This

implies a number of decisions to confront, both by the

missions and by the archive:

 Which PDS4 version do we use?

 How often do we migrate to the last version?

 Do we upgrade all existing products?

 If each mission decides to use a different PDS4

version, how do we manage them in the PSA?

To facilitate this decision making to data providers, the

PSA is building a flexible layout where various PDS4

versions are supported simultaneously: not only diverse

information model versions between missions, but also

different versions along the lifetime of a single mission.

For this purpose, version independent Java interfaces

have been created, which are implemented by adapter

classes that make the appropriate translations to the

corresponding schemas, with a minimal overhead.

Though every time a new IM version is required to be

incorporated, this common API could be slightly modi-

fied, the impact on client code is much less drastic than

by exposing the generated JAXB [6] classes directly.

Ingestion time. As explained in previous para-

graphs, creating a bundle involves many aspects, which

may lead to a heavy and potentially slow processing.

Consequently, it has been found that delivering fewer

bundles with more products results in a more efficient

strategy than trying to ingest numerous bundles with

less products each.

Transactional ingestion. Once validated, adding a

product or a bundle to the PSA comprises two clearly

separated steps: ingestion in the data model (database),

and importing the PDS4 files into the file repository. If

either of the two fails, the whole operation has to be

discarded, which has its own difficulty because, while

transactions are nowadays well supported by database

vendors, modifying and restoring the file system atom-

ically is not so well provided by existing libraries.

PDS4 Updater. The received and imported PDS4

constructs contain all the information that providers

have put in their delivery, but the data model reflects

only part of them, a subset that is considered enough

for the PSA interfaces to be exposed to users for

searches and visualization purposes (the backed PDS4

data can be downloaded too, if necessary). This ap-

proach may lead to a situation in which the metadata

stored in the database needs to be updated from the

products of the repository, when for example a new key

or some derived value is added to the data model and

has to be filled from the existing imported files.

The alternative of reingesting these products would

somewhat be an overreaction to this need. Therefore, it

is foreseen to develop this functionality into the PSA to

make it more tolerant to such update requests.

References: [1] Besse, S. et al., (2017) Planetary

and Space Science; [2] Macfarlane, A. et al., (2017)

Planetary and Space Science; [3] Salgado, J. et al.

(2013), IPDA Planetary Access Protocol; [4] Erard, S.

et al. (2014) The EPN-TAP protocol for the Planetary

Science Virtual Observatory; [5] Data Design Working

Group (2015) PDS4 Concepts; [6] E. Ort and B. Mehta

(2003) Java Architecture for XML Binding (JAXB).

6025.pdfInformatics and Data Analytics (2018)

