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Introduction:  Impact craters are structures formed 

when a meteoroid strikes the surface of a planetary 
body. The age of a surface can be estimated through 
analysis of crater frequencies, assuming random impact 
rates with known long-term averages [1]. Considerable 
research effort has been invested into developing auto-
mated techniques for the detection and counting of cra-
ters [2]. 

Approaches to Crater Detection Algorithms (CDAs) 
have included image analysis techniques such as edge 
detection and the Hough transform [3], though many in 
recent years have incorporated some form of machine 
learning, including neural network architectures.  

We propose an automated machine learning solution 
to the crater detection and counting problem on Mars, 
involving a Convolutional Neural Network (CNN), with 
ground truth (training) data provided by the Robbins da-
tabase of Martian craters with diameters over 1km [4]. 

Background: Convolutional neural networks have 
performed well at complex classification tasks, particu-
larly in image recognition, where pixel proximity is ex-
ploited to solve the scaling problem which exists for 
conventional multilayer perceptron neural networks. 
The OverFeat CNN architecture is capable of object 
classification, localisation and detection. This architec-
ture has been used to detect people in complex, crowded 
scenes [6], and was able to correctly detect overlapping 
and occluded examples, making it promising for use in 
a CDA – crater overlapping is similar to the occlusion 
problem. 

Google Tensorflow is an open-source machine 
learning library based on data flow graphs. The ad-
vantage of a Tensor-flow based CDA is that the algo-
rithm can be scaled to a distributed supercomputing en-
vironment to process large volumes of planetary data. 

A supervised machine learning algorithm requires a 
ground truth database of examples labelled by experts. 
Robbins and Hynek [4] coordinated a community effort 
to catalogue Martian craters over the entire Martian sur-
face with diameters above 1 km, currently numbering 
some 384,343 entries. We assumed the Robbins data-
base to be consistent enough for the training of an algo-
rithm, and sought to develop a CDA with the objective 
of generalising to craters smaller than 1km. Even among 
experts, a maximum variation of up to 45% has been 
noted in crater identifications [5]. A CDA may provide 
a more consistent, less subjective, and of course faster 
method of crater detection compared to expert analysis 
of images. 

Approach: A CNN-based CDA was designed using 
TensorBox, an open-source object detection framework 
based on Google Tensorflow. Images from Mars Odys-
sey’s Thermal Emission Imaging System (THEMIS) 
were used to generate a ground truth database using the 
Robbins identifications. The USGS Astrogeology Sci-
ence Centre has released mosaic images combining in-
dividual THEMIS images into a larger map. Mosaics 
covering the entire equatorial latitude band of N°30 to 
S°30 were selected for analysis. Each mosaic image 
spans a region of approximately 2700 km by 1800 km. 
The mosaics were split into a total of 6387 tiles each 
with width 1280 pixels and height 960 pixels. The Rob-
bins Database craters were mapped to each tile.  

 

 
Figure 1: CDA crater detections 

 
The CDA was trained for 20,000 iterations with a 

learning rate of 0.001. The neural network model that 
was used by the CDA was GoogLeNet-OverFeat, pre-
trained on the Imagenet dataset. Figure 1 shows the pre-
dictions made using the CDA. Preliminary results visu-
ally correlate with craters. The CDA is able to detect a 
broad range of craters that vary in size and appearance.  

The algorithm was generalised to higher-resolution 
Context Camera (CTX) Martian satellite imagery to de-
tect craters from approximately 100m in diameter in the 
vicinity of the Mojave crater. Figure 2 shows a crater 
size frequency distribution isochron generated through 
the automated workflow for comparison with earlier 
analysis by Werner et al. [7] based on manual counts. 
The crater frequencies are consistent with the results of 
Werner’s analysis in the 0.1-1km range. 
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Figure 2: CDA generated crater count statistics, show-

ing crater frequency versus diameter. 
 
The complete workflow for the training and applica-

tion of the CDA, including generation of the character-
istic surface aging curve is depicted in Figure 3. 

 

 
Figure 3: CDA system workflow 

 
Conclusions: A CDA was developed, based on a 

Convolutional Neural Network trained using THEMIS 
images and the Robbins database for ground truth. The 
results are extremely promising, and an analysis of 
crater frequencies around the Mojave crater proved the 
concept of generalisation to higher resolution data and 
smaller craters. 

The characteristic isochron generated automatically 
by the algorithm is consistent with curves generated by 
expert manual counting.  

Future work will further refine the algorithm, and 
expand the training set to include examples from within 
a broader size range and higher resolution data. The al-
gorithm will be applied to more surface targets, with the 

ultimate objective of deploying supercomputing re-
sources to obtain crater count ages for the entire Martian 
surface. 
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